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Abstract. We show that a Hitchin representation is determined by the spectral radii of the
images of simple, non-separating closed curves. As a consequence, we classify isometries of
the intersection function on Hitchin components of dimension 3 and on the self-dual Hitchin
components in all dimensions.

1. Introduction

Any discrete faithful representation of the fundamental group π1(S) of a closed oriented
surface S of genus greater than 1 into PSL2(R) is determined, up to conjugacy in PGL2(R), by
the translation lengths of (the images) of a finite collection of elements represented by simple
closed curves. More precisely, a collection of 6g − 5 simple closed curves will be enough but
6g − 6 simple closed curve will not suffice, see Schmutz [31] and Hamenstädt [16]. In PSL2(R)
the translation length of an element is determined by the absolute value of the trace (which
is well-defined, although the trace is not), so one may equivalently say that a discrete faithful
representation of π1(S) into PSL2(R) is determined by the (absolute values of) the traces of a
finite collection of elements represented by simple closed curves. In this paper, we establish
analogues of this result for Hitchin representations.

Hitchin representations. A Hitchin representation of dimension d is a representation of π1(S)
into PSLd(R) which may be continuously deformed to a d-Fuchsian representation that is the
composition of the irreducible representation of PSL2(R) into PSLd(R) with a discrete faithful
representation of π1(S) into PSL2(R). The Hitchin component is the spaceHd(S) of all Hitchin
representations of π1(S) into PSLd(R), considered up to conjugacy in PGLd(R). In particular,
H2(S) is the Teichmüller space of S – see Section 2 for details and history.

Self dual Hitchin representations are those Hitchin representations that takes values in PSp(2n,R)
and PSO(n,n + 1) – depending on whether d is odd or even. Self dual representations are fixed
points of the contragredient automorphism ofHd(S). The setSHd(S) of self dual representations
is a contractible submanifold ofHd(S).

Spectrum rigidity. If ρ is a Hitchin representation and γ a conjugacy class in π1(S), we define
the spectral length of γ with respect to ρ as

Lγ(ρ) := log Λ(ρ(γ))
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where Λ(ρ(γ)) is the spectral radius of ρ(γ). The marked length spectrum of ρ is the function from
the set of free homotopy classes of closed curves in S – identified with the set of conjugacy
classes of elements of the fundamental group – defined by

L(ρ) : γ 7→ Lγ(ρ).

Similarly we define the trace spectrum as the map

γ 7→ |Tr(ρ(γ))|,

where |Tr(A)| is the absolute value of the trace of a lift of a matrix A ∈ PSLd(R) to SLd(R).
Our first main result is then

Theorem 1.1. [SimpleMarked Length Rigidity] Two Hitchin representations of the same dimension
for a surface of genus greater than 2 are equal whenever their marked length spectra coincide on simple
non-separating curves.

We have a finer result for the trace spectrum

Theorem 1.2. [SimpleMarked Trace Rigidity] Let S be a closed orientable surface of genus genus
greater than 2. Given d, then there exists a finite set Ld(S) of simple non-separating curves, so that two
Hitchin representations of π1(S) of dimension d are equal whenever their marked trace spectra coincide
on Ld(S).

Observe that Ld(S) contains at least dim(Hd(S)) = −χ(S)(d2
− 1) curves, but our methods do

not provide any upper bound on the size of Ld(S).
Dal’bo and Kim [10] earlier proved that Zariski dense representations of a group Γ into a

semi-simple Lie group G without compact factor are determined, up to automorphisms of G,
by the marked spectrum of translation lengths of all elements on the quotient symmetric space
G/K. Bridgeman, Canary, Labourie and Sambarino [6] proved that Hitchin representations, are
determined up to conjugacy in PGLd(R) by the spectral radii of all elements. Bridgeman and
Canary [5] proved that discrete faithful representations of π1(S) into PSL(2,C) are determined
by the translation lengths of simple non-separating curves on S. On the other hand, Marché and
Wolff [24, Section 3] gave examples of non-conjugate, indiscrete, non-elementary representations
of a closed surface group of genus two into PSL2(R) with the same simple marked length
spectra.

In Section 11 we establish a version of Theorem 1.1 for Hitchin representations of compact
surfaces with boundary which are “complicated enough,” while in Section 10 we establish an
infinitesmal version of Theorem 1.1.

Isometry groups of the intersection. We apply Theorem 1.1 to characterize diffeomorphism
preserving the intersection function of representations inHd(S).

In Teichmüller theory, the intersection I(ρ, σ) of representations ρ and σ in T (S) is the length
with respect to σ of a random geodesic in H2/ρ(π1(S)) – where H2 is the hyperbolic plane.
Thurston showed that the Hessian of the intersection function gives rise to a Riemannian metric
on T (S), which Wolpert [32] showed was a multiple of the classical Weil–Petersson metric – see
also Bonahon [2], McMullen [27], and Bridgeman [4] for further interpretation. As a special
case of their main result, Bridgeman, Canary, Labourie and Sambarino [6] used the Hessian
of a renormalized intersection function to construct a mapping class group invariant, analytic,
Riemannian metric onHd(S), called the pressure metric – see Section 8 for details.
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Royden [29] showed that the isometry group of T (S), equipped with the Teichmüller metric,
is the extended mapping class group, while Masur and Wolf [26] established the same result for
the Weil–Petersson metric.

In our context, the intersection isometry group – respectively self dual intersection isometry group–
is the set of those diffeomorphisms ofHd(S) – respectively SHd(S) – preserving I.

Theorem 1.3. [Self dual isometry group] For a surface of genus greater than 2, the self dual
intersection isometry group coincides with the extended mapping class group of S.

We have a finer result when d = 3.

Theorem 1.4. [Isometry Group In Dimension 3] For a surface S of genus greater than 2, the
intersection isometry group of H3(S) is generated by the extended mapping class group of S and the
contragredient involution.

Since, as we will see in the proof, isometries of the intersection function are also isometries of
the pressure metric, we view this as evidence for the conjecture that this is also the isometry
group of the pressure metric – See Section 8.1 for precise definitions.

Our proof follows the outline suggested by the proof in Bridgeman–Canary [5] that the
isometry group of the intersection function on quasifuchsian space is generated by the extended
mapping class group and complex conjugation.

A key tool in the proof of Theorem 1.4 is a rigidity result for the marked simple, non-separating
Hilbert length spectrum for a representation into PSL(3,R), see Section 9. Kim [18], see also
Cooper-Delp [9], had previously proved a marked Hilbert length rigidity theorem for the full
marked length spectrum.

Positivity and correlation functions. If ρ is a Hitchin representation of dimension d, and γ is a
non-trivial element, a matrix representing ρ(γ) may be written –see Section 2 – as

ρ(γ) =

d∑
i=1

λi
(
ρ(γ)

)
pi

(
ρ(γ)

)
,

where λ1
(
ρ(γ)

)
> . . . > λd

(
ρ(γ)

)
> 0 are the eigenvalues (of some lift) of ρ(γ) and pi

(
ρ(γ)

)
are the

projectors onto the corresponding 1-dimensional eigenspaces. Let
• A = (α1, . . . , αn) be an n-tuple of non-trivial elements of π1(S),
• I =

(
i j

)
j∈{1,...,n}

be an n-tuple of elements in {1, . . . , d}.

The associated correlation function TI(A) onHd(S) is defined by

TI(A) : ρ 7→ Tr

 n∏
j=1

pi j(ρ(α j))

 .
The proof of the marked spectrum theorems use the following result of independent interest.
(Recall that a pair of disjoint simple closed curves is said to be non-parallel if they do not bound
an annulus.)

Theorem 1.5. [Rigidity for correlations functions] Let ρ and σ be Hitchin representations in
Hd(S). Suppose that α, β, δ ∈ π1(S) − {1} are represented by based loops which are freely homotopic to a
collection of pairwise disjoint and non-parallel simple closed curves. Assume that
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(1) for any η ∈ {α, β, δ}, ρ(η) and σ(η) have the same eigenvalues,
(2) for all i, j, k in {1, . . . , d}

Ti, j,k(α, β, δ)

T j,k(β, δ)
(ρ) =

Ti, j,k(α, β, δ)

T j,k(β, δ)
(σ),

then ρ and σ are conjugate, in PGLd(R), on the subgroup of π1(S) generated by α, β and γ.

Before even stating that theorem, we need to prove the relevant correlation functions never
vanish. This will be a corollary of the following theorem. First recall that a Hitchin representation
inHd(S) defines a limit curve in the flag manifold of Rd, so that any two point distinct points are
transverse. Recall also that any transverse pair flags a and b in Rd defines a decomposition of
Rd into a sum of d lines L1(a, b), . . .Ld(a, b).

Theorem 1.6. [Transverse bases] Let ρ be a Hitchin representation of dimension d. Let (a, x, y, b) be
four cyclically ordered points in the limit curve of ρ, then any d lines in

{L1(a, b), . . . ,Ld(a, b),L1(x, y), . . . ,Ld(x, y)}

are in general position.

This last result is a consequence of the positivity theory developed by Lusztig [22] and used
in the theory of Hitchin representations by Fock–Goncharov [11] and is actually a special case of
a more general result about positive quadruples, see Theorem 3.6. Theorem 3.6 may be familiar
to experts but we could not find a proper reference to it in the literature. We also establish a
more general version of Theorem 1.5, see Theorem 4.4.

Structure of the proof. Let us sketch the proof of Theorem 1.1. The proof runs through the
following steps. We first show, in Section 6, that if the length spectra agree on simple non-
separating curves, then all the eigenvalues agree for these curves. This follows by considering
curves of the form αnβ when α and β have geometric intersection one and using an asymptotic
expansion. A similar argument yields that ratio of correlation functions agree for certain triples
of curves that only exist in genus greater than 2, see Theorem 7.1, and a repeated use of Theorem
1.5 concludes the proof of Theorem 1.1. Theorem 1.6 is crucially used several times to show that
coefficients appearing in asymptotic expansions do not vanish.

Acknowledgements. Section 3.2 uses ideas that are being currently developed by the third
author in collaboration with Olivier Guichard and Anna Wienhard. We have benefitted
immensely from discussions with Yves Benoist, Sergey Fomin, Olivier Guichard, Andres
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upon work supported by the National Science Foundation while the third author was in residence
at the Mathematical Sciences Research Institute in Berkeley, CA, during the Fall 2016 semester.
The authors also gratefully acknowledge support from U.S. National Science Foundation grants
DMS 1107452, 1107263, 1107367 "RNMS: GEometric structures And Representation varieties"
(the GEAR Network).
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2. Hitchin representations and limit maps

2.1. Definitions. Let S be a closed orientable surface of genus g > 2. A representation
ρ : π1(S)→ PSL2(R) is said to be Fuchsian if it is discrete and faithful. Recall that Teichmüller
space T (S) is the subset of

Hom(π1(S),PSL2(R))/PGL2(R)
consisting of (conjugacy classes of) Fuchsian representations.

Let τd : PSL2(R)→ PSLd(R) be the irreducible representation (which is well-defined up to
conjugacy). A representation σ : π1(S)→ PSLd(R) is said to be d-Fuchsian if it has the form τd ◦ρ
for some Fuchsian representation ρ : π1(S)→ PSL2(R). A representation σ : π1(S)→ PSLd(R)
is a Hitchin representation if it may be continuously deformed to a d-Fuchsian representation.
The Hitchin componentHd(S) is the component of the space of reductive representations up to
conjugacy:

Homred(π1(S),PSLd(R))/PGLd(R)
consisting of (conjugacy classes of) Hitchin representations. In analogy with Teichmüller space
T (S) = H2(S), Hitchin proved thatHd(S) is a real analytic manifold diffeomorphic to a cell.

Theorem 2.1. (Hitchin [17]) If S is a closed orientable surface of genus g > 2 and d > 2, thenHd(S) is
a real analytic manifold diffeomorphic to R(d2

−1)(2g−2).

The Fuchsian locus is the subset of Hd(S) consisting of d-Fuchsian representations. It is
naturally identified with T (S).

2.2. Real-split matrices and proximality. If A ∈ SLd(R) is real-split, i.e. diagonalizable over
R, we may order the eigenvalues {λi(A)}di=1 so that

|λ1(A)| > |λ2(A)| > · · · |λd−1(A)| > |λd(A)|.

Let {ei(A)}di=1 be a basis for Rd so that ei(A) is an eigenvector with eigenvalue λi(A) and let
ei(A) denote the linear functional so that 〈ei(A)|ei(A)〉 = 1 and 〈ei(A)|e j(A)〉 = 0 if i , j. Let pi(A)
denote the projection onto < ei(A) > parallel to the hyperplane spanned by the other d − 1 basis
elements. Then,

pi(A)(v) = 〈ei(A) | v〉 ei(A)
and we may write

A =

d∑
i=1

λi(A)pi(A).

We say that A is k-proximal if

|λ1(A)| > |λ2(A)| > . . . |λk(A)| > |λk+1(A)|

and we say that A is purely loxodromic if it is (d − 1)-proximal, in which case it is diagonalizable
over Rwith eigenvalues of distinct modulus. If A is k-proximal, then, for all i = 1, . . . , k, pi(A)
is well-defined and ei(A) is well-defined up to scalar multiplication. Moreover, if A is purely
loxodromic pi(A) is well-defined and ei(A) and ei(A) are well-defined up to scalar multiplication
for all i. If A ∈ PSLd(R), we say that A is purely loxodromic if any lift of A to an element of SLd(R)
is purely loxodromic.
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2.3. Transverse flags and associated bases. A flag for Rd is a nested family

f = ( f 1, f 2, . . . , f d−1)

of vector subspaces of Rd where f i has dimension i and f i
⊂ f i+1 for each i. Let Fd denote the

space of all flags for Rd. A n-tuple ( f1, . . . , fn) ∈ F n
d is transverse if

f d1
1 ⊕ f d2

2 ⊕ . . . ⊕ f dn
n = Rd

for any partition {di}i∈{1,...,n} of d. Let F (n)
d be the set of transverse n-tuples of flags, F (n)

d is an
open dense subset in F n

d .
Two transverse flags (a, b) determine a decomposition of Rd as sum of lines {Li(a, b)}ki=1 where

Li(a, b) = ai
∩ bd−i+1

for all i. A basis εa
b = {ei} forRd is consistent with (a, b) ∈ F (2)

d if ei ∈ Li(a, b) for all i, or, equivalently,
if

a j = 〈e1, . . . , e j〉 and b j = 〈ed, . . . , ed− j+1〉

for all j. In particular, the choice of basis is well-defined up to scalar multiplication of basis
elements.

2.4. Limit maps. Labourie [19] associates a limit map from ∂∞π1(S) into Fd to every Hitchin
representation. This map encodes many crucial properties of the representation.

Theorem 2.2. (Labourie [19]) If ρ ∈ Hd(S), then there exists a unique continuous ρ-equivariant map
ξρ : ∂∞π1(S)→ Fd, such that:

(1) (Proximality) If γ ∈ π1(S) − {1}, then ρ(γ) is purely loxodromic and

ξi
ρ(γ+) = 〈e1(ρ(γ)), . . . , ei(ρ(γ))〉

for all i, where γ+
∈ ∂∞π1(S) is the attracting fixed point of γ.

(2) (Hyperconvexity) If x1, . . . , xk,∈ ∂∞π1(S) are distinct and m1 + . . . + mk = d, then

ξm1(x1) ⊕ . . . ⊕ ξm j(x j) ⊕ . . . ⊕ ξmk(z) = Rd.

Notice that if γ ∈ π1(S) − {1} and γ± ∈ ∂∞π1(S) are its attracting and repelling fixed points,
then ρ(γ) is diagonal with respect to any basis consistent with (ξρ(γ+), ξρ(γ−)). Moreover, if σ
is in the Fuchsian locus, then σ(γ) has a lift to SLd(R) all of whose eigenvalues are positive.
Therefore, if ρ ∈ Hd(S), then ρ(γ) has a lift to SLd(R) with positive eigenvalues and we define

λ1(ρ(γ)) > λ2(ρ(γ)) > · · · > λd(ρ(γ)) > 0

to be the eigenvalues of this specific lift.
It will also be useful to note that any Hitchin representation ρ : π1(S)→ PSLd(R) can be lifted

to a representation ρ̃ : π1(S)→ SLd(R). Moreover, Hitchin [17, Section 10] observed that every
Hitchin component lifts to a component of Homred(π1(S),SLd(R))/SLd(R).
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2.5. Other Lie groups and other length functions. More generally, if G is a split, real simple
adjoint Lie group, Hitchin [17] studies the component

H(S,G) ⊂ Homred(π1(S),G)/G

which contains the composition of a Fuchsian representation into PSL2(R) with an irreducible
representation of PSL2(R) into G and shows that it is an analytic manifold diffeomorphic to
R(2g−2)dim(G).

If ρ ∈ Hd(S), then we define the contragredient representation ρ∗ ∈ Hd(S) by ρ∗(γ) = ρ(γ−1)T

for all γ ∈ π1(S). The contragredient involution ofHd(S) takes ρ to ρ∗.
We define the self dual Hitchin representations – and accordingly the self dual Hitchin component

SHd(S) – to be the fixed points of the contragredient involution. Since the contragredient
involution is an isometry of the pressure metric, SHd(S) is a totally geodesic submanifold of
Hd(S).

Observe then that if ρ is a self dual Hitchin representation and γ ∈ π1(S), then the eigenvalues
λ1(ρ(γ)), . . . , λd(ρ(γ)) satisfy λ−1

i (ρ(γ)) = λd−i+1(ρ(γ)) for all i. On the other hand, Theorem 1.2 in
[6] implies that if λ−1

1 (ρ(γ)) = λd(ρ(γ)) for all γ, then ρ is conjugate to its contragredient ρ∗. Notice
that the contragredient involution fixes each point inH(S,PSp(2d,R)),H(S,PSO(d, d + 1)), and
H(S,G2,0) considered as subsets ofH(S,PSL(2d,R)),H(S,PSL(2d + 1,R)), andH(S,PSL(7,R))
respectively. Conversely, a self dual representation, being conjugate to its contragredient, is
not Zariski dense, hence belongs to such a subset by a result of Guichard [14]. In particular,
SH2d(S) = H(S,PSp(2d,R)) and SH2d+1(S) = H(S,PSO(d, d + 1)).

In our work on isometries of the intersection function, it will be useful to consider the Hilbert
length LH

γ (ρ) of ρ(γ) when γ ∈ π1(S) and ρ ∈ Hd(S), where

LH
γ (ρ) := logλ1(ρ(γ)) − logλd(ρ(γ)) ,

and similarly the Hilbert length spectrum as a function on free homotopy classes.1 Notice that
LH
γ (ρ) = LH

γ−1(ρ) = LH
γ (ρ∗). One readily observes that a representation is self dual if and only if

LH
γ (ρ) = 2Lγ(ρ) for all non-trivial γ ∈ π1(S).

3. Transverse bases

In this section, we prove a strong transversality property for ordered quadruples of flags in the
limit curve of a Hitchin representation, which we regard as a generalization of the hyperconvexity
property established by Labourie [19] (see Theorem 2.2). (Recall that any pair (a, b) of transverse
flags determines a decomposition of Rd into a sum of d lines L1(a, b) ⊕ · · · ⊕ Ld(a, b) where
Li(a, b) = ai

∩ bd−i+1.)

Theorem 1.6. Let ρ be a Hitchin representation of dimension d and let (a, x, y, b) be four cyclically
ordered points in the limit curve of ρ, then any d lines in

{L1(a, b), . . . ,Ld(a, b),L1(x, y), . . . ,Ld(x, y)}

are in general position.

1This is called the Hilbert length, since when d = 3 it is the length of the closed geodesic in the homotopy class
of γ in the Hilbert metric on the strictly convex real projective structure on S with holonomy ρ, see, for example,
Benoist [1, Proposition 5.1].
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The proof of Theorem 1.6 relies on the theory of positivity developed by Lusztig [22] and
applied to representations of surface groups by Fock and Goncharov [11]. It will follow from a
more general result for positive quadruples of flags, see Theorem 3.6.

Remark: When ρ ∈ H3(S), there exists a strictly convex domain Ωρ in RP2 with C1 boundary
so that ρ(π1(S)) acts properly discontinuously and cocompactly on Ωρ, see Benoist [1] and
Choi-Goldman [8]. If ξρ is the limit map of ρ, then ξ1

ρ identifies ∂∞π1(S) with ∂Ωρ, while ξ2
ρ(z)

is the plane spanned by the (projective) tangent line to ∂Ωρ at ξ1
ρ(z). In this case, Theorem 1.6 is

an immediate consequence of the strict convexity of Ωρ, since if x and y lie in the limit curve,
then L1(x, y) = x1, L3(x, y) = y1 and L2(x, y) is the intersection of the tangent lines to Ωρ at x1 and
y1. Moreover, one easily observes that the analogue of Theorem 1.6 does not hold for cyclically
ordered quadruples of the form (a, x, b, y).

3.1. Components of positivity. Given a flag a, we define the Schubert cell Ba ⊂ Fd to be the set
of all flags transverse to a. Let Ua be the group of unipotent elements in the stabilizer of a, i.e.
the set of unipotent upper triangular matrices with respect to a basis {ei} consistent with a. If
b ∈ Ba, we can assume that {ei} is consistent with (a, b), so it is apparent that the stabilizer of b in
Ua is trivial. The lemma below follows easily.

Lemma 3.1. If b ∈ Ba, then Ba = Ua(b). Moreover, the map

hb : Ua → Ba

defined by hb(u) = u(b) is a diffeomorphism.

Suppose that (a, b) ∈ F (2)
d and εa

b is a basis consistent with the pair (a, b). We say that A ∈ SLd(R)
is totally non-negative with respect to εa

b, if every minor in its matrix with respect to the basis εa
b

is non-negative. Let U(εa
b)>0 ⊂ Ua be the set of totally non-negative unipotent upper triangular

matrices with respect to εa
b. We say that a minor is an upper minor with respect to εa

b if it is
non-zero for some element of U(εa

b)>0. We then let U(εa
b)>0 be the subset of U(εa

b)>0 consisting of
elements all of whose upper minors with respect to εa

b are positive. Moreover, let ∆(εa
b)>0 be

the group of matrices which are diagonalizable with respect to εa
b with positive eigenvalues.

Lusztig [22] proves that

Lemma 3.2. (Lusztig [22, Sec. 2.12, Sec. 5.10] If (a, b) ∈ F (2)
d and εa

b is a basis consistent with the
pair (a, b), then

U(εa
b)>0U(εa

b)>0 ⊂ U(εa
b)>0 and U(εa

b)>0 = U(εa
b)>0 ⊂ Ua.

If i , j and t ∈ R, the elementary Jacobi matrix Ji j(t) with respect to εa
b = {ei} is the matrix such

that Ji j = e j + tei and Ji j(ek) = ek if k , i. If i < j and t > 0, then Ji j(t) ∈ U(εa
b)>0. Moreover, U(εa

b)>0
is generated by elementary Jacobi matrices of this form (see, for example, [12, Thm. 12]). So,

(1) the semigroup U(εa
b)>0 is connected, and

(2) if g ∈ ∆(εa
b), then gU(εa

b)>0g−1 = U(εa
b)>0.

We define the component of positivity for εa
b as

V(εa
b) := U(εa

b)>0(b).

Lusztig [22, Thm. 8.14] (see also Lusztig [23, Lem. 2.2]) identifies V(εa
b) with a component of

the intersection Ba ∩ Bb of two opposite Schubert cells.
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Lemma 3.3. (Lusztig [22, Thm. 8.14]) If (a, b) ∈ F (2)
d and εa

b is a basis consistent with the pair (a, b),
then V(εa

b) is a connected component of Ba ∩ Bb.

3.2. Positive configurations of flags. We now recall the theory of positive configurations of
flags as developed by Fock and Goncharov [11].

A triple (a, x, b) ∈ F (3)
d is positive with respect to a basis εa

b consistent with (a, b) if x = u(b) for
some u ∈ U(εa

b)>0. If x ∈ V(εa
b), we define

V(a, x, b) = V(εa
b)

and notice that V(a, x, b) is the component of Ba ∩ Bb which contains x.
More generally, a (n + 2)-tuple (a, xn, . . . , x1, b) ∈ F (n+2)

d of flags is positive if there exist
ui ∈ U(εa

b)>0 so that xp = u1 · · · up(b) for all p. By construction, the set of positive (n + 2)-tuples of
flags is connected. Since U(εa

b)>0 is a semi-group, (a, xi, b) is a positive triple for all i and, more
generally, (a, xi1 , . . . , xik , b) is a positive (k + 2)-tuple whenever 1 6 ii < · · · < ik 6 n.

Fock and Goncharov showed that the positivity of a n-tuple is invariant under the action of
the dihedral group on n elements.

Proposition 3.4. (Fock-Goncharov [11, Thm. 1.2]) If (a1, . . . , an) is a positive n-tuple of flags in Fd,
then (a2, a3, . . . , an, a1) and (an, an−1, . . . , a1) are both positive as well.

As a consequence, we see that every sub k-tuple of a positive n-tuple is itself positive.

Corollary 3.5. If (a1, . . . , an) is a positive n-tuple of flags in Fd and 1 6 i1 < i2 < · · · < ik 6 n, then
(ai1 , ai2 , . . . , aik) is positive.

Proof. It suffices to prove that every sub (n − 1)-tuple of a positive n-tuple is positive. By
Proposition 3.4, we may assume that the sub (n − 1)-tuple has the form (a1, a3, . . . , an) and we
have already seen that this (n − 1)-tuple is positive. �

The main result of the section can now be formulated more generally as a result about positive
quadruples.

Theorem 3.6. [Transverse bases for quadruples] Let (a, x, y, b) be a positive quadruple in Fd, then
any d lines in

{L1(a, b), . . . ,Ld(a, b),L1(x, y), . . . ,Ld(x, y)}
are in general position.

3.3. Positive maps. If Σ is a cyclically ordered set with at least 4 elements, a map γ : Σ→ Fd
is said to be positive if whenever (z1, z2, z3, z4) is an ordered quadruple in Σ, then its image
(γ(z1), γ(z2), γ(z3), γ(z4)) is a positive quadruple in F (4)

d .
For example, given an irreducible representation

τd : PSL2(R)→ PSLd(R)

the τd-equivariant Veronese embedding

ντ : ∂H2 = P1(R)→ Fd

(where ντ takes the attracting fixed point of g ∈ PSL2(R) to the attracting fixed point of τd(g)) is
a positive map. More generally, Fock and Goncharov, see also Labourie-McShane [20, Appendix
B], showed that the limit map of a Hitchin representation is positive.
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Theorem 3.7. (Fock-Goncharov [11, Thm 1.15]) If ρ ∈ Hd(S), then the associated limit map
ξρ : ∂∞π1(S)→ Fd is positive.

Notice that Theorem 1.6 follows immediately from Theorems 3.6 and 3.7.

We observe that one may detect the positivity of a n-tuple using only quadruples, which
immediately implies that positive maps take cyclically ordered subsets to positive configurations.

Lemma 3.8. A (n + 2)-tuple (a, xn, . . . , x1, b) is positive if and only if (a, xi+1, xi, b) is positive for all
i = 1, . . . ,n − 1.

Proof. Corollary 3.5 implies that if (a, xn, . . . , x1, b) is positive, then (a, xi+1, xi, b) is positive for all
i.

Now suppose that (a, xi+1, xi, b) is positive for all i = 1, . . . ,n − 1. Since (a, x2, x1, b) is positive,
there exists u1,u2 ∈ U(εa

b)>0 so that x1 = u1(b) and x2 = u1u2(b). If we assume that there
exists ui ∈ U(εa

b)>0, for all i 6 k < n, so that xp = u1 · · · up(b) for all p 6 k, then, since
(a, xk+1, xk, b) is positive, there exists uk+1, vk ∈ U(εa

b)>0 such that xk+1 = vkuk+1(b) and xk = vk(b).
However, Lemma 3.1 implies that vk = u1 · · · uk. Iteratively applying this argument, we see that
(a, xn, . . . , x1, b) is positive. �

Corollary 3.9. If Σ is a cyclically ordered set, f : Σ → Fd is a positive map and (a1, . . . , an) is a
cyclically ordered n-tuple in Σ, then ( f (a1), f (a2), f (a3), . . . , f (an)) is a positive n-tuple in Fd.

The following result allows one to simplify the verification that a map of a finite set into Fd is
positive, see also Section 5.11 in Fock-Goncharov [11]

Proposition 3.10. Let P be a finite set in ∂∞H2 and T be an ideal triangulation of the convex polygon
spanned by P. A map f : P→ Fd is positive if whenever (x, y, z,w) are the (cyclically ordered) vertices
of two ideal triangles in T which share an edge, then ( f (x), f (y), f (z), f (w)) is a positive quadruple.

Proof. Suppose T ′ is obtained from T by replacing an internal edge of T by an edge joining the
opposite vertices of the adjoining triangles. Label the vertices of the original edge by a and b and
the vertices of the new edge by x and y, so that the vertices occur in the order (a, x, b, y) in ∂∞H2. If
the edge (y, a) abuts another triangle with additional vertex z, then (a, x, y, z) is a cyclically ordered
collection of points in P which are the vertices of two ideal triangles in T ′ which share an edge.
By our original assumption on T , ( f (a), f (x), f (b), f (y)) and ( f (a), f (b), f (y), f (z)) are positive, so,
by Proposition 3.4, ( f (y), f (a), f (x), f (b)) and ( f (y), f (z), f (a), f (b)) are positive. Lemma 3.8 then
implies that ( f (y), f (z), f (a), f (x), f (b)) is positive. Another application of Proposition 3.4 gives
that ( f (a), f (x), f (b), f (y), f (z)) is positive, so ( f (a), f (x), f (y), f (z)) is positive. One may similarly
check that all the images of cyclically ordered vertices of two ideal triangles which share an
edge in T ′ have positive image. Since any two ideal triangulations can be joined by a sequence
of triangulations so that consecutive triangulations differ by an elementary move, any ordered
sub-quadruple of P has positive image. Therefore, f is a positive map. �

3.4. Complementary components of positivity. If (a, b) ∈ F (2)
d and εa

b = {ei} is a basis consistent
with (a, b), then one obtains a complementary basis σ(εa

b) = {(−1)iei}which is also consistent with
(a, b). We first observe that for a positive sextuple (x, y, a,u, v, b), then the the components of
positivity for (a, b) containing {u, v} and {x, y} are associated to complementary bases. The proof
proceeds by first checking the claim for configurations in the image of a Veronese embedding
and then applying a continuity argument.
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Lemma 3.11. If (x, y, a,u, v, b) is a positive sextuple of flags and εa
b is a basis consistent with (a, b) so

that V(εa
b) contains {u, v}, then V(σ(εa

b)) contains {x, y}.

Proof. Consider the irreducible representationτd : PSL2(R)→ PSLd(R) taking matrices diagonal
in the standard basis forR2 to matrices diagonal with respect to εa

b. This gives rise to a Veronese
embedding ντ : ∂H2 = S1

→ Fd taking∞ to a and 0 to b.
The involution of Fd induced by conjugating by the diagonal matrix D, in the basis εa

b, with
entries ((−1)i) interchanges the components of ντ(S1) − {a, b} and interchanges V(εa

b) and V(σ(εa
b)).

Therefore, our result holds when x, y, z and w lie in the image of ντ.
Since ντ is positive and the set of positive sextuples is connected, there is a family of positive

maps ξt : {x, y, a,u, v, b} → Fd so that the image of ξ0 lies on the image of the Veronese embedding
and ξ1 = Id. Since PSLd(R) acts transitively on space of pairs of transverse flags, we may assume
that ξt(a) = a and ξt(b) = b for all t. Notice that each of ξt({x, y}) and ξt({x, y}) lies in a component
of Ba ∩ Bb for all t. Since ξ1({u, v}) ⊂ V(εa

b), ξt({u, v}) ⊂ V(εa
b) for all t. Since ξ0({u, v}) ⊂ V(εa

b) and
ξ0(x, y, a,u, v, b) lies in the image of an Veronese embedding, ξ0({x, y}) ⊂ V(σ(εa

b)), which in turn
implies that ξt({x, y}) ⊂ V(σ(εa

b)) for all t. �

We next observe that the closures of complementary components of positivity intersect in at
most one point within an associated Schubert cell.

Proposition 3.12. If (a, b) ∈ F (2)
d and εa

b is a basis consistent with (a, b), then

Ba ∩ V(εa
b) ∩ V(σ(εa

b)) = {b}.

Proof. By Lemma 3.1,

V(εa
b) = hb(U(εa

b)>0) ⊂ hb(U(εa
b)>0) ⊂ hb(Ua) = Ba

and hb(U(εa
b)>0) is a closed subset of Ba, since hb is a diffeomorphism. So

Ba ∩ V(εa
b) ⊂ hb(U(εa

b)>0) and Ba ∩ V(σ(εa
b)) ⊂ hb(U(σ(εa

b))>0).

Thus, again since hb is a diffeomorphism,

Ba ∩ V(εa
b) ∩ V(σ(εa

b)) ⊂ hb(U(εa
b)>0) ∩ hb(U(σ(εa

b))>0

= hb

(
U(εa

b)>0 ∩U(σ(εa
b))>0

)
=

(
U(εa

b)>0 ∩U(σ(εa
b))>0

)
(b)

So Proposition 3.12 follows from the following lemma:

Lemma 3.13.
U(εa

b)>0 ∩U(σ(εa
b))>0 = {I}.

Proof. Let A = (ai j) ∈ U(εa
b)>0 ∩U(σ(εa

b))>0 be written with respect to the basis εa
b. Notice that if

we let ai j be the matrix coefficients for A with respect to the basis σ(εa
b), then ai j = (−1)i+ jai j. It

follows immediately that ai j = 0 if i + j is odd.
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If A , I, let ai j > 0 be a non-zero off-diagonal term which is closest to the diagonal, i.e. al j = 0
if l , j and l > i and ail = 0 if l , i and l < j. If l ∈ (i, j), we consider the minor[

ail ai j
all al j

]
=

[
0 ai j
1 0

]
which has determinant −ai j, so contradicts the fact that A is totally non-negative.

�

�

3.5. Nesting of components of positivity. We will need a strict containment property for
components of positivity associated to positive quintuples.

Proposition 3.14. If (a, x, z, y, b) is a positive quintuple in Fd, then

V(x, z, y) ⊂ V(a, z, b).

We begin by establishing nesting properties for components of positivity associated to positive
quadruples.

Lemma 3.15. If (a, x, y, b) is a positive quadruple in Fd, then

V(x, y, b) ⊂ V(a, y, b) and V(a, x, y) ⊂ V(a, x, b)

Proof. Since (a, x, y, b) is a positive quadruple, there exists a basis εa
b for (a, b) and u, v ∈ U(εa

b)>0 so
that y = u(b) and x = u(v(b)). Since U(εa

b)>0 is a semi-group uv ∈ U(εa
b)>0 and x, y ∈ V(εa

b) = U(εa
b)>0(b).

Notice that εa
y = u(εa

b) = {u(ei)} is a basis consistent with (a, y) since u(a) = a, u(b) = y and
〈ei〉 = ai

∩ bd−i+1, so
〈u(ei)〉 = u(ai) ∩ u(bd−i+1) = ai

∩ yd−i+1.

Let W = uU(εa
b)>0u−1, so W = U(εa

y)>0. Therefore,

V(εa
y) = W(y) = uU(εa

b)>0(u−1(y)) =
(
uU(εa

b)>0

)
(b) ⊂ U(εa

b)>0(b) = V(εa
b)

where the inclusion follows from the fact that U(εa
b)>0 is a semi-group and u ∈ U(εa

b)>0. Moreover,

x ∈ V(εa
y) =

(
uU(εa

b)>0

)
(b) ⊂ V(εa

b)

since uv ∈ uU(εa
b)>0 and x = u(v(b)), so

V(a, x, y) = V(εa
y) ⊂ V(εa

b) = V(a, x, b).

Since (b, y, x, a) is also a positive quadruple, the same argument shows that V(b, y, x) ⊂ V(b, y, a).
Since V(b, y, x) = V(x, y, b) and V(b, y, a) = V(a, y, b), we conclude that

V(x, y, b) ⊂ V(a, y, b).

�

We now analyze the limiting behavior of sequences of components of positivity.

Lemma 3.16. Suppose that {cn} is a sequence of flags converging to b and (y1, a, y0, cn, zn, b) is a positive
sextuple for all n. Then the Hausdorff limit of {V(cn, zn, b)} is the singleton {b}.
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Proof. Since (a, cn, zn, b) and (cn, zn, b, a) are positive, Lemma 3.15 implies that

V(cn, zn, b) ⊂ V(a, zn, b) ∩ V(cn, zn, a)

for all n, so
V(cn, zn, b) ⊂ V(a, zn, b) ∩ V(cn, zn, a).

After extracting a subsequence, we may assume that
{
V(cn, zn, b)

}
converges to a Hausdorff

limit H. It is enough to prove that H = {b}. Notice that, since each V(cn, zn, b) is connected, H
must be connected.

Notice that, for all n, V(a, zn, b) = V(a, y0, b), since (a, y0, zn, b) is positive, and V(cn, zn, a) =

V(cn, y1, a), since (cn, zn, y1, a) is positive. Since {Bcn} converges to Bc,
{
V(cn, zn, a)

}
=

{
V(cn, y1, a)

}
converges to V(b, y1, a). Therefore,

{b} ⊂ H ⊂ V(a, y0, b) ∩ V(b, y1, a).

However, Lemma 3.11 and Proposition 3.12 together imply that

Ba ∩ V(a, y0, b) ∩ V(b, y1, a) = {b}.

Since Ba is an open neighborhood of b and H is connected, we conclude that H = {b}. �

Proof of Proposition 3.14. We note that if (a, xn, . . . , x1, b) is positive with respect to the basis εa
b with

xn = vb for v ∈ U(εa
b)>0, if u ∈ U(εa

b)>0 then (a, vu(xn), xn, . . . , x1, b) is positive. Since positivity is
invariant under cyclic permutations, we may add flags in any position to a positive n-tuple to
obtain a positive (n + 1)-tuple.

Choose c and e so that (a, c, x, z, y, e, b) is positive and let g be an element in ∆(εc
e)>0. We

observe that (a, c, g(y), g(z), e, b) is positive.

Lemma 3.17. If (a, c, x, z, e, b) is a positive sextuple in Fd and g ∈ ∆(εc
e)>0, then (a, c, g(x), g(z), e, b) is

positive.

Proof. Identify (a, c, g(x), g(z), e, b) with the cyclically ordered vertices of an ideal hexagon inH2

and consider the triangulation T all of whose internal edges have an endpoint at e. Proposition
3.10 implies that it suffices to check that (c, g(x), g(z), e), (c, g(x), e, a), and (a, c, e, b) are positive
quadruples, to guarantee that (a, c, g(x), g(z), e, b) is positive.

Since (c, x, z, e) is positive, there exists u, v ∈ U(εc
e)>0 so that x = vu(e) and z = v(e). If we let

u′ = gug−1 and v′ = gvg−1, then u′, v′ ∈ U(εc
e)>0 (see property (2) in Section 3.1). One checks that

v′u′(e) = (gvg−1)(gug−1) = g(vu)(g−1(e)) = g(vu(e)) = g(x), and

v′(e) = (gvg−1)(e) = gv(g−1(e)) = g(v(e)) = g(z),
so (c, g(x), g(z), e) is a positive quadruple.

Since (c, x, e, a) is a positive quadruple, there exists u, v ∈ U(εc
a)>0 so that x = vu(a) and e = v(a).

Notice that v(εc
a) = εc

e, so v−1gv ∈ ∆(εc
a), which implies that u′ = (v−1gv)u(v−1gv)−1

∈ U(εc
a)>0.

Notice that

g(x) = gvu(a) = v(v−1gv)u(a) = v(v−1gv)u(v−1gv)−1(a) = vu′(a) and e = v(a),

so (c, g(x), e, a) is positive. Since we already know that (a, c, e, b) is positive, this completes the
proof. �



14 BRIDGEMAN, CANARY, AND LABOURIE

Since (x, z, y, e) and (c, x, z, e) are positive, Lemma 3.15 implies that

V(x, z, y) ⊂ V(x, z, e) ⊂ V(c, z, e).

We may further choose g so that e is an attractive point, in which case, its basin of attraction is
Bc. In particular, since x, z ∈ V(c, z, e) ⊂ Bc,

lim
n→∞

gn(x) = lim
n→∞

gn(z) = e.

Proposition 3.16 and Lemma 3.17 then imply that{
V(gn(x), gn(z), e)

}
−→ {e},

as n→∞. Since V(x, z, y) ⊂ V(x, z, e),

V(gn(x), gn(z), gn(y)) = gn(V(x, z, y) ⊂ gn(V(x, z, e)) = V(gn(x), gn(z), e),

so {
V(gn(x), gn(z), gn(y))

}
−→ {e}.

Since Bc contains a neighborhood of e, we see that

V(gn(x), gn(z), gn(y)) ⊂ Bc,

for all large enough n. So,

V(x, z, y) = g−n
(
V(gn(x), gn(z), gn(y))

)
⊂ g−n(Bc) = Bc.

Symmetric arguments show that
V(x, z, y) ⊂ Be

So, V(x, z, y) is a connected subset of Bc ∩ Be which contains z. Therefore,

V(x, z, y) ⊂ V(c, z, e).

Since (a, c, z, e) and (a, z, e, b) are positive, Lemma 3.15 gives that

V(c, z, e) ⊂ V(a, z, e) ⊂ V(a, z, b)

which completes the proof. �

3.6. Rearrangements of flags. Given a pair (x, y) of transverse flags in Fd, one obtains a
decomposition of Rd into lines {Li(x, y)}. By rearranging the ordering of the lines, one obtains
a collection of flags including a and b. Formally, if P is a permutation of {1, . . . , d}, then one
obtains flags F0(P(x, y)) and F1(P(x, y)) given by

F0(P(x, y))r = 〈LP(1)(x, y), . . . ,LP(r)(x, y)〉

and
F1(P(x, y))r = 〈LP(d)(x, y), . . . ,LP(d−r+1)(x, y)〉

for all r.
We will see that if (a, x, y, b) is positive, then (a,F1(P(x, y)), b) is also positive. We begin by

considering the case where P is a transposition.

Lemma 3.18. If (a, x, z, y, b) is a positive quintuple in Fd, j > i and Pi, j is a transposition interchanging
i and j, then

F1(Pi, j(x, y)) ∈ V(x, z, y) ⊂ V(a, z, b).
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Proof. Let εx
y be a basis for (x, y) so that V(x, z, y) = V(εx

y) and let εx
y = {ei}. Let Ji j(t) be the

elementary Jacobi matrix with respect to {ei}, i.e. Ji j(t)(e j) = e j + tei and Ji j(t)(ek) = ek if k , j. Since

yd−k = 〈ek+1, . . . , ed〉 ,

we see that

Ji, j(t)(yd−k) = 〈ek+1, . . . , ei, . . . , e j + tei, . . . , en〉 = yd−k = F1(Pi, j(x, y))d−k

for all k < i,
Ji j(t)(yd−k) = 〈ek+1, . . . , ed〉 = yd−k = F1(Pi, j(x, y))d−k

for all k > j, and
Ji j(t)(yd−k) = 〈ek+1, . . . , e j + tei, . . . , ed〉

for all i 6 k < j. Therefore,

lim
t→∞

Ji j(t)(yd−k) = 〈ek+1, . . . , e j−1, ei, e j+1, . . . , ed〉 = F1(Pi, j(x, y))d−k.

for all i 6 k < j, so
lim
t→∞

Ji j(t)(y) = F1(Pi, j(x, y)).

Since Ji j(t) ∈ U(εx
y)>0 for all t > 0 and U(εx

y)>0U(εx
y)>0 ⊂ U(εx

y)>0, by Lemma 3.2, Ji j(t)(y) ∈ V(x, z, y)

for all t > 0, so F1(Pi, j(x, y)) ∈ V(x, z, y). Lemma 3.14 implies that V(x, z, y) ⊂ V(a, z, b), so
F1(Pi, j(x, y)) ∈ V(a, z, b). �

With the help of an elementary group-theoretic lemma, we may generalize the argument
above to handle all permutations.

Lemma 3.19. If (a, x, z, y, b) is a positive quintuple in Fd and P is a permutation of {1, . . . , d}, then

F1(P(x, y)) ∈ V(x, z, y) ⊂ V(a, z, b).

Proof. Let εx
y be a basis for (x, y) so that V(x, z, y) = V(εx

y) and let εx
y = {ei}. Suppose that Q is a

permutation such that
F1(Q(x, y)) ⊂ V(x, z, y) ⊆ V(a, z, b).

We first observe, as in the proof of Lemma 3.18, that if n > m, then

lim
t→∞

Jm,n(t)F1(Q(x, y)) = F1(Q̂(x, y))

where Q̂ = Q if Q−1(n) > Q−1(m) and Q̂ = Pm,nQ if not. Since Jmn(t) ∈ U(εx
y)>0 if t > 0 and

U(εx
y)>0U(εx

y)>0 ⊂ U(εx
y)>0,

Jm,n(t)(V(x, z, y)) ⊂ V(x, z, y) ,
for all t > 0, which implies that

Jm,n(t)
(
V(x, z, y)

)
⊂ V(x, z, y)

for all t > 0. Therefore,
F1(Q̂(x, y)) ⊂ V(x, z, y) ⊆ V(a, z, b).

We use the following elementary combinatorial lemma.
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Lemma 3.20. If P is a permutation of {1, . . . , d}, then we may write

P = Pik, jk · · ·Pi1, ji .

So that il < jl for all l and moreover

Q−1
l−1(il) < Q−1

l−1( jl) ,

where Ql−1 := Pil−1, jl−1 · · ·Pi1, j1 .

We now complete the proof using Lemma 3.20. Let P = Pik, jk · · ·Pi1, ji as in Lemma 3.20.
Lemma 3.18 implies that

F1(Q1(x, y)) ⊂ V(x, z, y) ⊆ V(a, z, b)

and we may iteratively apply the observation above to conclude that

F1(Ql(x, y)) ⊂ V(x, z, y) ⊆ V(a, z, b)

for all l, which implies that

F1(P(x, y)) ⊂ V(x, z, y) ⊆ V(a, z, b)

which completes the proof of Lemma 3.19. �

Proof of Lemma 3.20. We proceed by induction on d. So assume our claim hold for permutations
of {1, . . . , d − 1}.

Let r = P−1(1) and, if r , 1, let

P1 = P1,rP1,r−1 · · ·P1,2

and let P1 = id if r = 1. Notice that P1 has the desired form, P−1
1 (1) = r and if m,n ∈ {1, . . . , d} − {r}

and m < n, then P−1
1 (m) < P−1

1 (n). Let P̂2 be the restriction of PP−1
1 to {2, . . . , d}. By our inductive

claim, P̂2 = P̂ik, jk · · · P̂i1, ji where il < jl for all l and if Q̂l−1 := P̂il−1 jl−1 · · · P̂i1 j1 , then Q̂−1
l−1(il) < Q̂−1

l−1( jl).
One may extend each P̂il, jl to a transposition Pi1, jl of {1, . . . , d} by letting 1 be taken to itself. We
then note that

P = (Pik, jk · · ·Pi1, ji)P1,rP1,r−1 · · ·P1,2

has the desired form. �

Remark Notice that Lemma 3.18 is enough to prove Theorem 3.6 in the case that you choose
exactly one line from {Li(x, y)} and d − 1 lines from amongst {Li(a, b)}. (If we choose z so that
(a, x, z, y, b) is an positive quintuple of flags, Lemma 3.18 implies that F1(P j,d(x, y)) ∈ V(a, z, b), so
(a,F1(P j,d(x, y)), b) is a transverse triple of flags. So, for any j and k, ak−1

⊕F1(P j,d(x, y))1
⊕bd−k = Rd,

which is enough to establish the special case of Theorem 3.6.) This simple case is enough to
prove all the results in section 4. The full statement is only used in the proof of Lemma 6.3, and
this use of the general result may be replaced by an application of Labourie’s Property H, see
[19].
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3.7. Transverse bases for quadruples. We now restate and prove Theorem 3.6.

Theorem 3.6 Let (a, x, y, b) be a positive quadruple in Fd, then any d lines in

{L1(a, b), . . . ,Ld(a, b),L1(x, y), . . . ,Ld(x, y)}

are in general position.

Proof. If
I ∈ I = {(i1, . . . , ik) ∈ Zk

| 1 6 i1 < · · · < ik 6 d}.
Let

eI(a, b) = ei1(a, b) ∧ · · · ∧ eik(a, b).
Then our claim is equivalent to the claim that eI(a, b) ∧ eJ(x, y) , 0 if I, J ∈ I and |I| + |J| = d
(where |(i1, . . . , ik)| = k).

Let A be the matrix with coefficients Ai
j = 〈ei(a, b)|e j(x, y)〉. If I,K ∈ I and |I| = |K|, then let AI

K
be the submatrix of A given by the intersection of the rows with labels in I and the columns
with labels in K.

If I, J ∈ I and |I| + |J| = d, then, since

e j(x, y) =

d∑
i=1

Ai
jei(a, b),

we see that
eI(a, b) ∧ eJ(x, y) = det(AD−I

J )eD(a, b)

where D = (1, 2, . . . , d). So, it suffices to prove that all the minors of A are non-zero. Notice that
since our bases are well-defined up to (non-zero) scalar multiplication of the elements, the fact
that the minors are non-zero is independent of our choice of bases.

We first show that all initial minors are non-zero. A square submatrix AK
J is called initial

if both J and K are contiguous blocks in D and J ∪ K contains 1, i.e. it is square submatrix
which borders the first column or row. An initial minor is the determinant of an initial square
submatrix.

If AD−I
J is initial and J contains 1, then

J = (1, . . . , l) and I = (1, 2, . . . , r, d − s + 1, d − s + 2, . . . , d)

where r + s + l = d. (Notice that either r or s may be 0.) Since (a, b, x) ∈ F (3)
d ,

ar
⊕ bs
⊕ xl = Rd,

so
eI(a, b) ∧ eJ(x, y) , 0

which implies that det(AD−I
J ) , 0.

If D − I contains a 1 and J does not contain a 1, then

I = (l + 1, l + 2, . . . , d)
D − I = (1, . . . , l) ,

J = ( j + 1, j + 2, . . . , j + l) ,
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where j, l > 1 and j + l 6 d. Let P be any permutation such that

F1(P(x, y))l = 〈e j+1(x, y), . . . , e j+l(x, y)〉 .

Then, by Lemma 3.19, (a,F1(P(x, y)), b) is a transverse triple of flags. It follows that

bd−l
⊕ F1(P(x, y))l = Rd,

and hence that
eI(a, b) ∧ eJ(x, y) , 0,

so again det(AD−I
J ) , 0. Therefore we have shown that all the initial minors of A are non-zero.

We claim that ifξ0 = ντ is the Veronese embedding with respect to an irreducible representation
τd and (a0, x0, y0, b0) is an ordered quadruple in ξ0(P1(R)), then one may choose bases {ei(a0, b0)}
and {ei(x0, y0}} so that all the initial minors of the associated matrix A0 are positive. We may
assume that a0 = ξ0(∞), x0 = ξ0(t), y0 = ξ0(1) and b0 = ξ0(0) where t > 1. Observe that one can
choose bases {ei(0,∞)} and {ei(1, t)} for R2 so that M0 =

(
〈ei(0, 1)|e j(1, t)〉

)
is totally positive. If we

choose the bases

{ei(a0, b0) = e1(0,∞)d−ie2(0,∞)i−1
} and {ei(x0, y0) = e1(1, t)d−ie2(1, t)i−1

}

for Rd, then A0 = τd(M0). The claim then follows from the fact that the the image under τd of a
totally positive matrix in PSL2(R) is totally positive in PSLd(R), see [11, Prop. 5.7].

We can now continuously deform (a, x, y, b) = (a1, x1, y1, b1), through positive quadruples
(at, xt, yt, bt), to a positive quadruple (a0, x0, y0, b0) in the image of ξ0 = ντ. One may then
continuously choose bases {ei(at, bt)} and {ei(xt, yt)} beginning at {ei(a0, b0)} and {ei(x0, y0} and
terminating at bases {ei(a, b)} and {ei(x, y)} which we may assume are the bases used above. One
gets associated matrices {At} interpolating between A0 and A. Since the initial minors of At are
non-zero for all t and positive for t = 0, we see that the initial minors of A must be positive.

Gasca and Pena [13, Thm. 4.1] (see also Fomin-Zelevinsky [12, Thm. 9]) proved that a matrix
is positive if and only if all its initial minors are positive. Therefore, A is totally positive. In
particular, all its minors are positive, hence non-zero, which completes the proof. �

4. Correlation functions for Hitchin representations

We define correlation functions which offer measures of the transversality of bases associated
to images of collections of elements in π1(S). The results of the previous section can be used to
give conditions guaranteeing that many of these correlation functions are non-zero. We then
observe that, if we restrict to certain 3-generator subgroups of π1(S), then the restriction of the
Hitchin representation function to the subgroup is determined, up to conjugation, by correlation
functions associated to the generators and the eigenvalues of the images of the generators.

If {α1, . . . , αn} is a collection of non-trivial elements of π1(S), i j ∈ {0, 1, . . . , d} for all 1 6 j 6 n,
and ρ ∈ Hd(S), we define the correlation function 2

2The name “correlation function” does not bear any physical meaning here and just reflects the fact that the
correlation function between eigenvalues of quantum observables is the trace of products of projections on the
corresponding eigenspaces.
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Ti1,...,in(α1, . . . , αn)(ρ) := Tr

 n∏
j=1

pi j(ρ(α j))

 .
where we adopt the convention that

p0(ρ(α)) = ρ(α).

Notice that if all the indices are non-zero, then Ti1,...,in(α1, . . . , αn)(ρ) is well-defined, while if
some indices are allowed to be zero, Ti1,...,in(α1, . . . , αn)(ρ) is only well-defined up to sign. These
correlations functions are somewhat more general than the correlation functions defined in the
introduction as we allow terms which are not projection matrices.

4.1. Nontriviality of correlation functions. We say that a collection {α1, . . . , αn} of non-trivial
elements of π1(S) has non-intersecting axes if whenever i , j, (αi)+ and (αi)− lie in the same
component of ∂∞π1(S) − {(α j)+, (α j)−}. Notice that {α1, . . . , αn} have non-intersecting axes
whenever they are represented by mutually disjoint and non-parallel simple closed curves on S.

Theorem 1.6 has the following immediate consequence.

Corollary 4.1. If ρ ∈ Hd(S), α, β ∈ π1(S) − {1} and α and β have non-intersecting axes, then any d
elements of

{e1(ρ(α)), . . . , ed(ρ(α)), e1(ρ(β)), . . . , ed(ρ(β))}
span Rd. In particular,

〈ei(ρ(α))|e j(ρ(β))〉 , 0.

One can use Corollary 4.1 to establish that a variety of correlation functions are non-zero.
Notice that the assumptions of Lemma 4.2 will be satisfied whenever α is represented by a
simple curve and α and γ are co-prime.

Lemma 4.2. Ifρ ∈ Hd(S) , α, γ ∈ π1(S)−{1}, α andγαγ−1 have non-intersecting axes, and i ∈ {1, . . . , d},
then

Ti,0(α, γ)(ρ) = Tr
(
pi(ρ(α))ρ(γ)

)
, 0.

Proof. Since

Tr(pi(ρ(α))ρ(γ)) = 〈ei(ρ(α)), ρ(γ)(ei(ρ(α)))〉 = 〈ei(ρ(α)), ei(ρ(γαγ−1))〉 ,

the lemma follows immediately from Corollary 4.1 �

The next result deals with correlation functions which naturally arise when studying
configurations of elements of π1(S) used in the proof of Theorem 1.1, see Figure 1.

Proposition 4.3. Suppose that ρ ∈ Hd(S) , α, β, δ ∈ π1(S) − {1} have non-intersecting axes, and
i, j, k ∈ {1, . . . , d}. Then

(1)
Ti j(α, β)(ρ) = Tr(pi(ρ(α))p j(ρ(β))) , 0,

and
(2)

Ti, j,k(α, β, δ)(ρ) = Tr(pi(ρ(α))p j(ρ(β))pk(ρ(δ))) , 0.

Moreover, if γ ∈ π1(S) − {1} and β and γδγ−1 have non-intersecting axes, then
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(3)

Ti,0, j(β, γ, δ)(ρ) = Tr(pi(ρ(β))ρ(γ)p j(ρ(δ))) , 0,

and
(4)

Ti, j,0,k(α, β, γ, δ)(ρ) = T j,0,k(β, γ, δ)(ρ)
(

Ti, j,k(α, β, δ)(ρ)

T j,k(β, δ)(ρ)

)
, 0.

Proof. Notice that

Tr(pi(ρ(α))p j(ρ(β))) = 〈ei(ρ(α))|e j(ρ(β))〉 〈e j(ρ(β))|ei(ρ(α))〉

for all i and j. Both of the terms on the right-hand side are non-zero, by Corollary 4.1, so

Ti j(α, β)(ρ) = Tr(pi(ρ(α))p j(ρ(β))) , 0.

Similarly,

Ti, j,k(α, β, δ)(ρ) = 〈ei(ρ(α))|e j(ρ(β))〉 〈e j(ρ(β))|ek(ρ(δ))〉 〈ek(ρ(δ))|ei(ρ(α))〉

and Corollary 4.1 guarantees that each of the terms on the right hand side is non-zero, so (1)
and (2) hold.

Since

Tr(pi(ρ(β))ρ(γ)p j(ρ(δ))) = 〈ei(ρ(β))|ρ(γ)(e j(ρ(δ)))〉 〈e j(ρ(δ))|ei(ρ(β))〉

= 〈ei(ρ(β))|e j(ρ(γδγ−1))〉 〈e j(ρ(δ))|ei(ρ(β))〉

Corollary 4.1 again guarantees that each of the terms on the right hand side is non-zero, so (3)
holds.

Recall that if P,Q,A ∈ SLd(R) and P and Q are projections onto lines, then

PAQ =
Tr(PAQ)
Tr(PQ)

PQ

if Tr(PQ) , 0. (Suppose that P projects onto the line 〈v〉 with kernel the hyperplane V and Q
project onto the line 〈w〉with kernel the hyperplane W, then both PAQ and PQ map onto the
line 〈v〉 and have W in their kernel and are therefore multiples of one another. The ratio of the
traces detects this multiple.)

So, since Tr(p j(ρ(β))pk(ρ(δ)) , 0,

p j(ρ(β))ρ(γ)pk(ρ(δ)) =

(
Tr(p j(ρ(β))ρ(γ)pk(ρ(δ)))

Tr(p j(ρ(β))pk(ρ(δ)))

)
p j(ρ(β))pk(ρ(δ).
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Therefore,

Ti, j,0,k(α, β, γ, δ)(ρ) = Tr(pi(ρ(α))p j(ρ(β))ρ(γ)pk(ρ(δ)))

= Tr
(
pi(ρ(α))

(
Tr(p j(ρ(β))ρ(γ)pk(ρ(δ))

Tr(p j(ρ(β))pk(ρ(δ))

)
p j(ρ(β))pk(ρ(δ))

)
= Tr(p j(ρ(β))ρ(γ)pk(ρ(δ))

(
Tr(pi(ρ(α))p j(ρ(β))pk(ρ(δ))

Tr(p j(ρ(β))pk(ρ(δ))

)
= T j,0,k(β, γ, δ)(ρ)

(
Ti, j,k(α, β, δ)(ρ)

T j,k(β, δ)(ρ)

)
.

Since all the terms on the right hand side have already been proven to be non-zero, the entire
expression is non-zero, which completes the proof of (4). �

4.2. Correlation functions and eigenvalues rigidity. We now observe that correlation func-
tions and eigenvalues of images of elements determine the restriction of a Hitchin representation
up to conjugation. Theorem 1.5 is a special case of Theorem 4.4.

Theorem 4.4. Suppose that ρ, σ ∈ Hd(S) and α, β, δ ∈ π1(S) − {1} have non-intersecting axes. If
(1) λi(ρ(η)) = λi(σ(η)) for any η ∈ {α, β, δ} and any i ∈ {1, . . . , d}, and
(2) for all i, j, k in {1, . . . , d}

Ti, j,k(α, β, δ)

T j,k(β, δ)
(ρ) =

Ti, j,k(α, β, δ)

T j,k(β, δ)
(σ),

then ρ and σ are conjugate, in PGLd(R), on the subgroup 〈α, β, δ〉 of π1(S) generated by α, β and δ.

Proof. We will work in lifts of the restrictions of ρ and σ to 〈α, β, δ〉 so that the images of α, β and
δ all have positive eigenvalues. We will abuse notation by referring to these lifts by simply ρ
and σ. With this convention, λi(ρ(η)) = λi(σ(η)) for all i and any η ∈ {α, β, δ}. It suffices to prove
that these lifts are conjugate in GLd(R).

Let ai = ei(ρ(α)), ai = ei(ρ(α)), b j = e j(ρ(β)), b j = e j(ρ(β)), dk = ek(ρ(δ)) and dk = ek(ρ(δ)) for
all i, j, k. Similarly let âi = ei(σ(α)), âi = ei(σ(α)), b̂ j = e j(σ(β)), b̂ j = e j(σ(β)), d̂k = ek(σ(δ)) and
d̂k = ek(σ(δ)) for all i, j, k. With this notation,

Ti, j,k(α, β, δ)(ρ)

T j,k(β, δ)(ρ)
=
〈ai
|b j〉 〈b j

|dk〉 〈dk
|ai〉

〈b j|dk〉 〈dk|b j〉
=
〈ai
|b j〉 〈dk

|ai〉

〈dk|b j〉

and
Ti, j,k(α, β, δ)(σ)

T j,k(β, δ)(σ)
=
〈âi
|b̂ j〉 〈d̂k

|âi〉

〈d̂k|b̂ j〉
,

so, by assumption,
〈ai
|b j〉 〈dk

|ai〉

〈dk|b j〉
=
〈âi
|b̂ j〉 〈d̂k

|âi〉

〈d̂k|b̂ j〉
(1)

We may conjugate σ and choose ai, âi, b1 and b̂1 so that ai = âi for all i (so ai = âi for all i),
b1 = b̂1 and 〈ai

|b1〉 = 1 for all i. (Notice that this is possible since, by Corollary 4.1, b1 does not lie
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in any of the coordinate hyperplanes of the basis {ai} and similarly b̂1 does not lie in any of the
coordinate hyperplanes of the basis {âi} = {ai}.) Therefore, since λi(ρ(α)) = λi(σ(α)) for all i, we
see that ρ(α) = σ(α).

Corollary 4.1 also assures us that 〈dk
|b1〉 and 〈d̂k

|b̂1〉 are non-zero, so we may additionally
choose {dk

} and {d̂k
} so that 〈dk

|b1〉 = 1 and 〈d̂k
|b̂1〉 = 1 for all k. Therefore, taking j = 1 in

Equation (1), we see that
〈dk
|ai〉 = 〈d̂k

|âi〉 = 〈d̂k
|ai〉

for all i and k. It follows that dk = d̂k for all k, which implies that dk = d̂k for all k. Again, since
λi(ρ(δ)) = λi(σ(δ)) for all i, we see that ρ(δ) = σ(δ).

Equation (1) then reduces to

〈ai
|b j〉

〈dk|b j〉
=
〈âi
|b̂ j〉

〈d̂k|b̂ j〉
=
〈ai
|b̂ j〉

〈dk|b̂ j〉
.

We may assume, again applying Corollary 4.1, that {b j} and {b̂ j} have been chosen so that

〈a1
|b j〉 = 〈a1

|b̂ j〉 = 1

for all j, so, by considering the above equation with i = 1, we see that

〈dk
|b j〉 = 〈dk

|b̂ j〉

for all j and k, which implies that b j = b̂ j for all j, and, again since eigenvalues agree, we may
conclude that ρ(β) = σ(β), which completes the proof. �

5. Asymptotic expansion of spectral radii

In this section we establish a useful asymptotic expansion for the spectral radii of families of
matrices of the form AnB.

Lemma 5.1. Suppose that A,B ∈ SLd(R) and that A is real-split and 2-proximal. If (bi
j) is the matrix

of B with respect to {ei(A)}di=1 and b1
1, b1

2, and b2
1 are non-zero, then

λ1(AnB)
λ1(A)n = b1

1 +
b1

2b2
1

b1
1

(
λ2(A)
λ1(A)

)n

+ o
((
λ2(A)
λ1(A)

)n)
.

We begin by showing that the spectral radius is governed by an analytic function.

Lemma 5.2. Suppose that A,B ∈ SLd(R) and that A is real-split and proximal. If (bi
j) is the matrix of B

with respect to {ei(A)}di=1 and b1
1 is non-zero, then there exists an open neighborhood V ⊆ Rd−1 of the

origin and an analytic function f : V → R such that, for all sufficiently large n,

λ1(AnB)
λ1(A)n = f (zn

1 , . . . , z
n
d−1)

where zi =
λi+1(A)
λ1(A) for all i.

Moreover, there exists an analytic function X : V → Rd such that X(zn
1 , . . . , z

n
d−1) is an eigenvector of

AnB with eigenvalue λ1(AnB) for all sufficiently large n.
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Proof. The proof is based on the following elementary fact from linear algebra. A proof in the
case that U is one-dimensional is given explicitly in Lax [21, Section 9, Theorem 8] but the proof
clearly generalizes to our setting.

Lemma 5.3. Suppose that {M(u)}u∈U is analytically varying family of d × d matrices, where U is an open
neighborhood of 0 in Rn. If M(0) has a simple real eigenvalue λ0 , 0 with associated unit eigenvector
X0, then there exists an open sub-neighborhood V ⊆ U of 0 and analytic functions f : V → R, and
X : V → Rd such that f (0) = λ0, X(0) = X0 and f (v) is a simple eigenvalue of M(v) with eigenvector
X(v) for all v ∈ V.

Let U = Rd−1 and, for all u ∈ U, let D(u) be the diagonal matrix, with respect to {ei(A)}, with
entries (1,u1, . . . ,ud−1) and let M(u) = D(u)B for all u ∈ U. Then M(0) has b1

1 as its only non-zero
eigenvalue with associated unit eigenvector e1. So we may apply Lemma 5.3 with λ0 = b1

1 and
X(0) = e1. Let V be the open neighborhood and f : V → R and X : V → Rd be the analytic
functions provided by that lemma. Further, as M(0) has only one non-zero eigenvalue, we
can choose V such that the eigenvalue f (u) is the maximum modulus eigenvalue of M(u). For
sufficiently large n, (zn

1 , . . . , z
n
d−1) ∈ V, and AnB

λ1(A)n = M(zn
1 , . . . , z

n
d−1). So, for all sufficiently large n,

f (zn
1 , . . . , z

n
d−1) is the eigenvalue of maximal modulus of AnB/λ1(A)n with associated eigenvector

X(zn
1 , . . . , z

n
d−1). �

Proof of Lemma 5.1. Since A is 2-proximal,

|λ1(A)| > |λ2(A)| > λ3(A)| . . . > λd(A)|.

Let f : V → R be the function provided by Lemma 5.2. If zi = λi+1(A)/λ1(A), then
(zn

1 , . . . , z
n
d−1) ∈ V, so

λ1(AnB)
λ1(A)n = f

(
zn

1 , . . . , z
n
d−1

)
for all large enough n. Since f is analytic

f (u1, . . . ,ud−1) = f (0) +

d−1∑
i=1

∂ f
∂ui

(0)ui + O(uiu j).

If

g(s) = f (s, 0, . . . , 0) = λ1(D(1, s, 0, . . . , 0)B) = λ1




b1

1 b1
2 b1

3 . . . b1
d

sb2
1 sb2

2 sb2
3 . . . sb2

d
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0




= λ1

([
b1

1 b1
2

sb2
1 sb2

2

])
,

then we see, by examining the characteristic equation, that

g(s)2
− (b1

1 + sb2
2)g(s) + s(b1

1b2
2 − b1

2b2
1) = 0

Differentiating and applying the fact that g(0) = f (0) = b1
1 yields

0 = 2g(0)g′(0) − b1
1g′(0) − b2

2g(0) + (b1
1b2

2 − b1
2b2

1) = b1
1g′(0) − b1

2b2
1,
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so
∂ f
∂u1

(0) = g′(0) =
b1

2b2
1

b1
1

.

Since |zi| < |z1| for all i > 2,

λ1(AnB)
λ1(A)n = f

(
zn

1 , . . . , z
n
d−1

)
= f (0) +

d−1∑
i=1

∂ f
∂ui

(0)zn
i + o(zn

1)

= b1
1 +

b1
2b2

1

b1
1

zn
1 + o

(
zn

1

)
.

�

6. Simple lengths and traces

We show that two Hitchin representations have the same simple non-separating length
spectrum if and only if they have the same simple non-separating trace spectrum. Moreover, in
either case all eigenvalues of images of simple non-separating curves agree up to sign.

Theorem 6.1. If ρ, σ ∈ Hd(S), then |Tr(ρ(α))| = |Tr(σ(α))| for any α ∈ π1(S) represented by a simple
non-separating curve on S if and only if Lα(ρ) = Lα(σ) for any α ∈ π1(S) represented by a simple
non-separating curve on S. In either case, λi(ρ(α)) = λi(σ(α)) for all i and any α ∈ π1(S) represented by
a simple non-separating curve on S.

Theorem 6.1 follows immediately from Lemma 6.2, which shows that one can detect the
length of a curve from the traces of a related family of curves, and Lemma 6.3, which obtains
information about traces and eigenvalues from information about length.

Lemma 6.2. Suppose that α and β are represented by simple based loops on S which intersect only at
the basepoint and have geometric intersection one. If ρ, σ ∈ Hd(S) and |Tr(ρ(αnβ))| = |Tr(σ(αnβ))| for
all n, then Lα(ρ) = Lα(σ). Moreover, λi(ρ(α)) = λi(σ(α)) for all i.

Proof. It suffices to prove our lemma for lifts of the restriction of ρ and σ to 〈α, β〉 so that the all
the eigenvalues of the images of α are positive. We will abuse notation by calling these lifts ρ
and σ.

Since Tr(ρ(αnβ)) = ε(n) Tr(σ(αnβ)) for all n, where ε(n) ∈ {±1}, we may expand to see that∑
i

λn
i (ρ(α)) Tr(pi(ρ(α))ρ(β)) = ε(n)

∑
i

λn
i (σ(α)) Tr(pi(σ(α))σ(β))

for all n. Lemma 4.2 implies that Tr(pi(ρ(α))ρ(β)) and Tr(pi(σ(α))σ(β)) are non-zero for all i. There
exists an infinite subsequence {nk} of integers, so that ε(nk) = ε is constant. Passing to limits as
n→∞, and comparing the leading terms in descending order, we see that λi(ρ(α)) = λi(σ(α))
(and that Tr(ρ(β)pi(ρ(α))) = εTr(σ(β)pi(σ(α)))) for all i). In particular, Lα(ρ) = Lα(σ). �

Lemma 6.3. Suppose that γ and δ are represented by simple based loops on S which intersect only at the
basepoint and have geometric intersection one. If ρ, σ ∈ Hd(S) and Lβ(ρ) = Lβ(σ) whenever β ∈ 〈γ, δ〉 is
represented by a simple non-separating based loop, then |Tr(ρ(α))| = |Tr(σ(α))| and λi(ρ(α)) = λi(σ(α))
for all i where α ∈ 〈γ, δ〉 is represented by a simple non-separating based loop.
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Proof. If α ∈ 〈γ, δ〉 is represented by a simple, non-separating based loop, then there exists
β ∈ 〈γ, δ〉 so that β is represented by a simple based loop which intersects α only at the basepoint
and α and β have geometric intersection one, so αnβ is simple and non-separating for all n. It
again suffices to prove our lemma for lifts of the restriction of ρ and σ to 〈α, β〉 so that the all the
eigenvalues of the images of α are positive.

Let A = ρ(α), B = ρ(β), Â = σ(α), and B̂ = σ(β). Let λi = λi(A) and λ̂i = λi(Â). Let ei = ei(A)
and êi = ei(Â) and let (bi

j) be the matrix of B with respect to {ei}
d
i=1 and (b̂i

j) be the matrix of B̂

with respect to {êi}
d
i=1. Let Ω = e1 ∧ e2 ∧ . . . ∧ ed , 0 be the volume form associated to the basis

{e1}
d
i=1 for Rd.

We begin by showing that λ2 = λ̂2. Notice that A and AnB are real-split and 2-proximal for
all n. We need the result of the following lemma to be able to apply Lemma 5.1.

Lemma 6.4. Suppose that α and β are represented by simple based loops on S which intersect only at
the basepoint and have geometric intersection one. If ρ ∈ Hd(S) and B = (b j

i ) is a matrix representing
ρ(β) in the basis {ei(ρ(α)}, then b1

1, b1
2, and b2

1 are all non-zero.

Proof. Notice that B(e1) ∧ (e2 ∧ . . . ∧ ed) = b1
1Ω. So, if b1

1 = 0, then B(e1), which is a non-trivial
multiple of e1(ρ(βαβ−1)), lies in the hyperplane spanned by {e2, . . . , ed} = {e2(ρ(α)}, . . . , ed(ρ(α)},
which contradicts Corollary 4.3 (and also hyperconvexity). Notice that the fixed points of βαβ−1

must lie in the same component of ξρ(S1) − {α+, α−}, since α is simple. Therefore, b1
1 , 0.

Similarly, B(e1) ∧ (e1 ∧ e3 ∧ . . . ∧ ed) = −b2
1(k)Ω. So, if b2

1 = 0, then e1(ρ(βαβ−1)), lies in the
hyperplane spanned by {e1(ρ(α)), e3(ρ(α)), . . . , ed(ρ(α))}, which again contradicts Corollary 4.3.
Therefore, b2

1 , 0.
Moreover, B(e2) ∧ (e2 ∧ e3 ∧ . . . ∧ ed) = b1

2Ω. So, if b1
2 = 0, then e2(ρ(βαβ−1)), lies in the

hyperplane spanned by {e1(ρ(α)}, e3(ρ(α), . . . , ed(ρ(α)}, which again contradicts Corollary 4.3.
Thus, b1

2 , 0. �

By assumption |λ1(AnB)| = |λ1(ÂnB̂)| for all n. Lemma 5.1 then implies that∣∣∣∣∣∣b1
1 +

b1
2b2

1

b1
1

(
λ2

λ1

)n
+ o

((
λ2

λ1

)n)∣∣∣∣∣∣ =

∣∣∣∣∣∣∣b̂1
1 +

b̂1
2b̂2

1

b̂1
1

(
λ̂2

λ̂1

)n

+ o
((
λ̂2

λ̂1

)n)∣∣∣∣∣∣∣ ,
so |b1

1| = |b̂
1
1|. Comparing the second order terms, we see that

λ2

λ1
=
λ̂2

λ̂1
.

Since, by assumption, λ1 = λ̂1, we see that λ2 = λ̂2.
We now assume that for some k = 2, . . . , d − 1, λi(ρ(α)) = λi(ρ(α)) for all i 6 k whenever

α ∈ 〈γ, δ〉 is represented by a simple, non-separating based loop. We will prove that this
implies that λi(ρ(α)) = λi(σ(α)) for all i 6 k + 1 whenever α ∈ 〈γ, δ〉 is represented by a simple,
non-separating based loop. Applying this iteratively will allow us to complete the proof.

Let Ek(ρ) the kth-exterior product representation. If α ∈ 〈γ, δ〉 is represented by a simple
non-separating based loop, we again choose β ∈ 〈γ, δ〉 so that β is represented by a simple based
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loop which intersects α only at the basepoint and α and β have geometric intersection one. We
adapt the notations and conventions from the second paragraph of the proof.

Let C = Ek(ρ)(α), D = Ek(ρ)(β), Ĉ = Ek(σ)(α) and D̂ = Ek(σ)(β). Notice that C and CnD
are real-split and 2-proximal for all n. If ci = ei(C), then we may assume that each ci is a
k-fold wedge product of distinct e j. In particular, we may take c1 = e1 ∧ e2 ∧ . . . ∧ ek and
c2 = e1 ∧ e2 ∧ . . . ∧ ek−1 ∧ ek+1. Notice that λ1(C) = λ1 · · ·λk and λ2(C) = λ1 · · ·λk−1λk+1. Let (di

j)

be the matrix for D in the basis {ci}. We define ĉi and (d̂i
j) completely analogously.

Notice that D(e1 ∧ e2 ∧ . . . ∧ ek) ∧ (ek+1 ∧ . . . ∧ ed) = d1
1Ω. So, if d1

1 = 0, then

B(ξk
ρ(α+)) ⊕ ξn−k

ρ (α−) = ξk
ρ(β(α+)) ⊕ ξn−k

ρ (α−) , Rd.

which would contradict the hyperconvexity of ξρ. Therefore, d1
1 , 0.

Furthermore, D(e1 ∧ e2 ∧ . . . ∧ ek) ∧ (ek ∧ ek+2 ∧ . . . ∧ ed) = −d2
1Ω. So, if d2

1 = 0, then{
L1(ρ(βαβ−1)), . . . ,Lk(ρ(βαβ−1)),Lk(ρ(α)),Lk+2(ρ(α)), . . . ,Ld(ρ(α))

}
does not span Rd, which contradicts Corollary 4.3. Therefore, d2

1 , 0
Similarly, D(e1 ∧ e2 ∧ . . . ∧ ek−1 ∧ ek+1) ∧ (ek+1 ∧ ek+2 ∧ . . . ∧ ed) = d1

2Ω. So, if d1
2 = 0, then{

L1(ρ(βαβ−1)), . . . ,Lk−1(ρ(βαβ−1)),Lk+1(ρ(βαβ−1)),Lk+1(ρ(α)), . . . ,Ld(ρ(α))
}

does not span Rd, which contradicts Corollary 4.3. Thus d1
2 , 0.

Analogous arguments imply that d̂1
1, d̂2

1 and d̂1
2 are all non-zero. Moreover, by our iterative

assumption

|λ1(CnD)| = |λ1(AnB) · · ·λk(AnB)| = |λ1(ÂnB̂) · · ·λk(ÂnB̂)| = |λ1(ĈnD̂)|

for all n. We may again apply Lemma 5.1 to conclude that

λk+1

λk
=

∣∣∣∣∣λ2(C)
λ1(C)

∣∣∣∣∣ =

∣∣∣∣∣∣λ2(Ĉ)

λ1(Ĉ)

∣∣∣∣∣∣ =
λ̂k+1

λ̂k
.

Since, by our inductive assumption, λk = λ̂k, we conclude that λk+1 = λ̂k+1. Therefore, after
iteratively applying our argument, we conclude that λi(ρ(α)) = λ̂i(σ(α)) for all i, so |Tr(ρ(α))| =
|Tr(σ(α))|. �

7. Simple length rigidity

We are now ready to establish our main results on simple length and simple trace rigidity.
We begin by studying configurations of curves in the form pictured in Figure 1.

Theorem 7.1. Suppose that F is an essential, connected subsurface of S, and that α, β, δ ∈ π1(F) ⊂ S are
represented by based simple loops in F which intersect only at the basepoint, and are freely homotopic to a
collection of mutually disjoint and non-parallel, non-separating closed curves in F which do not bound a
pair of pants in F. If ρ, σ ∈ Hd(S) and |Tr(ρ(η))| = |Tr(σ(η))| whenever η ∈ π1(S) is represented by a
simple closed curve in F, then ρ and σ are conjugate, in PGLd(R), on the subgroup < α, β, δ > of π1(S).

Proof. We first show that we can replace α, β and δ with based loops in F, configured as in
Figure 1, which generate the same subgroup of π1(S). We then show that if α, β, γ and δ have
the form in Figure 1, then ρ and σ are conjugate on 〈α, β, δ〉.
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Figure 1. Curves α, β, γ, δ

Lemma 7.2. Suppose that F is an essential, connected subsurface of S, and that α, β, δ ∈ π1(F) ⊂ S are
represented by based simple loops in F which intersect only at the basepoint, and are freely homotopic to a
collection of mutually disjoint and non-parallel, non-separating closed curves in F which do not bound a
pair of pants in F. Then there exist based loops α̂, β̂, γ̂ and δ̂ in F which intersect only at the basepoint so
that α̂, β̂ and δ̂ are freely homotopic to a collection of mutually disjoint and non-parallel, non-separating
closed curves, each has geometric intersection one with γ̂ and

〈α̂, β̂, δ̂〉 = 〈α, β, δ〉 .

Proof. We first assume one of the curves, say β, has the property that the other two curves lie on
opposite sides of β, i.e. there exists a regular neighborhood N of β, so that α intersects only one
component of N − β and δ only intersects the other (see Figure 2).

α

β

A
Dδ

J K

J K

Figure 2. A regular neighborhood of α ∪ β ∪ δ when β locally separates α and δ

Let F1 be a regular neighborhood of T = α ∪ β ∪ δ. Then F1 is a four-holed sphere and each
component of F1 − T is an annulus. We label the boundary components A, D, J and K, where
A is parallel to α, D is parallel to δ, J is parallel to the based loop βαε1 and K is parallel to the
based loop βδε2 for some ε1, ε2 ∈ {±1}.

If A and D lie in the boundary of the same component of F−F1, then one may extend an arc in
F − F1 joining A to D to a closed curve γ̂ which intersects T only at the basepoint and intersects
each of α, β and δ with geometric intersection one. In this case, we simply take α̂ = α, β̂ = β and
δ̂ = δ. We assume from now on that A and D do not lie in the same boundary component of
F − F1.
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Since α is non-separating, A must lie in the boundary of a component G of F − F1 which
also has either J or K in its boundary. If the boundary of G contains J but not K, then β would
separate F which would contradict our assumptions, so the boundary of G must contain K.
(Recall that by assumption, the boundary of G cannot contain D.)

We may then extend an arc in G joining A to K to a closed curve γ̂ which intersects T only at
the basepoint and has geometric intersection one with α, β and K. Moreover, we may choose
a based loop δ̂ in the (based) homotopy class of βδε2 which intersects α, β and γ̂ only at the
basepoint. In this case, let α̂ = α and β = β̂. A, β and K are simple, disjoint non-separating
curves freely homotopic to α̂, β̂ and δ̂. If K is parallel to A, then disjoint representative of α, β
and δ would bound a pair of pants, which is disallowed. If K is parallel to β (or to δ), then δ (or
β) is separating, which is disallowed. Since A and β are non-parallel, by assumption, A, β and K
are also mutually non-parallel as required.

We may now assume that if ν ∈ {α, β, δ}, then there is a regular neighborhood of ν, so that the
other two based loops only intersect one component of the regular neighborhood. Let F1 be a
regular neighborhood of T. Again, F1 is a four-holed sphere and each component of F1 − T is an
annulus. We label the components of the boundary of F1 by A, B, D and E, where A is parallel
to α, B is parallel to β, and D is parallel to δ (see Figure 3). Since α is non-separating in F, there

α

β

δ

B

A
D

E

E

E

Figure 3. A regular neighborhood of α ∪ β ∪ δ when no curve locally separates

exists a component G of F− F1 whose boundary contains A and at least one other component of
the boundary of F1. If the boundary of G contains B, then one may extend an arc in G joining A
to B to a curve γ̂ which intersects T only at the basepoint and has geometric intersection one
with α and β and geometric intersection zero with δ. Let δ̂ be a simple based loop in F1 in the
(based) homotopy class of αδε for some ε ∈ {±1} which intersects γ̂ and T only at the basepoint.
Since δ̂ has algebraic intersection ±1 with γ̂, it must have geometric intersection one with γ̂.
Let α̂ = α and β̂ = β, then α̂, β̂ and δ̂ are freely homotopic to the collection {A,B, δ̂} of mutually
disjoint, non-separating curves. Notice that A and B are non-parallel by our original assumption,
while if δ̂ is parallel to B, then our original collection of curves would be freely homotopic to
the boundary of a pair of pants, contradicting our original assumption. If δ̂ is parallel to A, then
δ is separating, which is again disallowed. Therefore, A, B and δ̂ are non-parallel as required.

If the boundary of G, contains C, then we may perform the same procedure reversing the
roles of β and δ. Therefore, we may assume that the boundary of G contains both A and E, but
not B or C. Since β is non-separating and B is not in the boundary of G, there must be another
component H of F − F1 which has both B and C in its boundary. We then simply repeat the
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procedure above to construct a curve γ̂ which intersects T only at the basepoint which has
geometric intersection one with β and δ and geometric intersection zero with α. We then let α̂
be a simple based loop in F1 intersecting γ̂ only at the basepoint, in the based homotopy class of
βαε for some ε ∈ {±1}, which has geometric intersection one with γ̂. Letting β̂ = β and δ̂ = δ, we
may complete the proof as in the previous paragraph. �

Notice that we may always re-order the curves produced by Lemma 7.2 so that α̂pβ̂qγ̂δ̂r is
represented by a simple non-separating curve in F for all p, q, r ∈ Z. Moreover, our assumptions
imply that α̂, β̂ and δ̂ have non-intersecting axes and that β̂ and γ̂β̂γ̂−1 have non-intersecting
axes. Theorem 7.1 will then follow from the following result.

Proposition 7.3. Suppose that α, β, γ, δ ∈ π1(S) − {1}, α, β and γ have non-intersecting axes and that
β and γβγ−1 have non-intersecting axes. If ρ, σ ∈ Hd(S) and |Tr(ρ(αpβqγδr))| = |Tr(σ(αpβqγδr))| for
all p, q, r ∈ Z, then ρ and σ are conjugate, in PGLd(R), on the subgroup < α, β, δ > of π1(S).

Proof. We may apply Lemma 6.2 to the pairs (α, γ), (β, γ) and (δ, γ) to conclude that λi(ρ(η)) =
λi(σ(η)) for all i and any η ∈ {α, β, δ}. (Notice, for example, that for the pair (α, γ) our assumptions
imply that |Tr(ρ(αnγ))| = |Tr(σ(αnγ))| for all n, so the assumptions of Lemma 6.2 are satisfied.)

Combining the expansions

ρ(α) =

d∑
i=1

λi(ρ(α))pi(ρ(α)) and σ(α) =

d∑
i=1

λi(σ(α))pi(σ(α))

with our assumption that |Tr(ρ(αpβqγδr))| = |Tr(σ(αpβqγδr))| for all p, q, r ∈ Z, we see that
d∑

i=1

λ
p
i (ρ(α)) Tr

(
pi(ρ(α))ρ(βqγδr)

)
= ±

d∑
i=1

λ
p
i (σ(α)) Tr

(
pi(σ(α))σ(βqγδr)

)
for all p, q, r ∈N. Since ρ(α) and σ(α) are purely loxodromic and λi(ρ(α)) = λi(σ(α)) for all i, we
may fix q and r, let p tend to +∞ and consider terms of the same order to conclude that

Tr
(
pi(ρ(α))ρ(βqγδr)

)
= ±Tr

(
pi(σ(α))σ(βqγδr)

)
(2)

for all i ∈ {1, . . . , d} and all q, r ∈N. Similarly, we expand Equation (2) to see that
d∑

i=1

λ
q
i (ρ(β)) Tr

(
pi(ρ(α))p j(ρ(β))ρ(γδr)

)
= ±

d∑
i=1

λ
q
i (σ(β)) Tr

(
pi(σ(α))p j(σ(β))σ(γδr)

)
and consider terms of the same order as q→ +∞ to conclude that

Tr
(
pi(ρ(α))p j(ρ(β))ρ(γδr)

)
= ±Tr

(
pi(σ(α))pi(σ(β))σ(γδr)

)
for all i, j ∈ {1, . . . , d} and r ∈ N. Expanding this last equation and letting r tend to +∞, we
finally conclude that

Tr(pi(ρ(α))p j(ρ(β))ρ(γ)pk(ρ(δ))) = ±Tr(pi(σ(α))p j(σ(β))σ(γ)pk(σ(δ)))

for all i, j, k ∈ {1, . . . , d}, i.e.

Ti, j,0,k(α, β, γ, δ)(ρ) = ±Ti, j,0,k(α, β, γ, δ)(σ) (3)

for all i, j, k ∈ {1, . . . , d}.
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We similarly expand the equation

Tr(ρ(βqγδr)) = ±Tr(σ(βqγδr))

to see that
T j,0,k(β, γ, δ)(ρ) = ±T j,0,k(β, γ, δ)(σ) (4)

for all j and k.
Recall, from part (4) of Proposition 4.3, that

Ti, j,0,k(α, β, γ, δ)(ρ) = T j,0,k(β, γ, δ)(ρ)
(

Ti, j,k(α, β, δ)(ρ)

T j,k(β, δ)(ρ)

)
, 0

for all ρ ∈ Hd(S) and i, j, k ∈ {1, . . . , d}, so we may conclude from Equations (3) and (4) that

Ti, j,k(α, β, δ)(ρ)

T j,k(β, δ)(ρ)
= ±

Ti, j,k(α, β, δ)(σ)

T j,k(β, δ)(σ)

for all i, j, k ∈ {1, . . . , d}.
We may join ρ to σ by a path {ρt} of Hitchin representations. So, since

Ti, j,k(α,β,δ)(ρt)
T j,k(β,δ)(ρt)

is non-zero
for all t, again by Proposition 4.3, and varies continuously, it follows that

Ti, j,k(α, β, δ)(ρ)

T j,k(β, δ)(ρ)
=

Ti, j,k(α, β, δ)(σ)

T j,k(β, δ)(σ)

for all i, j, k ∈ {1, . . . , d}. Therefore, since we have already seen that λi(ρ(η)) = λi(σ(η)) for all i
if η ∈ {α, β, γ}, Theorem 4.4 implies that ρ and σ are conjugate, in PGLd(R), on the subgroup
< α, β, δ > of π1(S). �

�

We are now ready to establish that the restriction of the marked trace spectrum to the simple
non-separating curves determines a Hitchin representation.

Theorem 7.4. Let S be a closed orientable surface of genus g > 3. If ρ, σ ∈ Hd(S) and |Tr(ρ(α))| =
|Tr(σ(α))| whenever α ∈ π1(S) is represented by a simple non-separating curve, then ρ = σ.

Proof. Consider the standard generating set

S = {α1, β1, . . . , αg, βg}

for π1(S) so that
∏g

i=1[αi, βi], each generator is represented by a based loop, and any two such
based loops intersect only at the basepoint.

Notice that the generators are freely homotopic to simple, non-separating closed curves so
that the representative of αi is disjoint from the representative of every other generator except
βi and that the representative of βi is disjoint from the representative of every other generator
except αi. Moreover, no three of the representatives which are disjoint bound a pair of pants.
Therefore, Theorem 7.1 implies that we may assume that ρ and σ agree on < α1, α2, α3 >.

If η ∈ S − {α1, α2, β1, β}, then Theorem 7.1 implies that there exists C ∈ PGLd(R) so that ρ and
CσC−1 agree on < α1, α2, η >. Since ρ and σ agree on α1 and α2, the following lemma, which we
memorialize for repeated use later in the paper, assures that C = I, so ρ(η) = σ(η).
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Lemma 7.5. Suppose that S is a closed surface of genus at least two, ρ : π1(S) → PSLd(R) and
σ : π1(S) → PSLd(R) are Hitchin representations, and there exists a subgroup H of π1(S) and
C ∈ PSLd(R) so that ρ|H = Cσ|HC−1. If there exists ν1, ν2 ∈ H with non-intersecting axes, so that
ρ(ν1) = σ(ν1) and ρ(ν2) = σ(ν2), then C = I, so ρ|H = σ|H.

Proof. Since ρ and σ agree on ν1 and ν2, C must commute with ρ(ν1) and ρ(ν2). Thus C is
diagonalizable over Rwith respect to both {ei(ρ(ν1))} and {ei(ρ(ν2)}. If C , I, then Rd admits a
non-trivial decomposition into eigenspaces of C with distinct eigenvalues. Any such eigenspace
W is spanned by a sub-collection of {ei(ρ(ν1))} and by a sub-collection of {e j(ρ(ν2))}. In particular,
some ei(ρ(ν1)) is in the subspace spanned by a subcollection of {e j(ρ(ν2))}. Since ν1 and ν2 have
non-intersecting axes, this contradicts Corollary 4.1. Therefore, C = I. �

In order to prove that ρ(β1) = σ(β1), we similarly apply Theorem 7.1 and Lemma 7.5 to the
elements α2, α3 and β1, while to prove that ρ(β2) = σ(β2) we consider the elements α1, α3 and
β2. Since we have established that ρ and σ agree on every element in the generating set S, we
conclude that ρ = σ. �

Marked simple length rigidity, Theorem 1.1, is an immediate consequence of Theorems 1.2
and 6.1.

We may use the Noetherian property of polynomial rings to prove Theorem 1.2, wich asserts
that Hitchin representations of the same dimension are determined by the traces of a finite set
of simple non-separating curves.

Proof of Theorem 1.2. We consider the affine algebraic variety

V(S) = Hom(π1(S),SLd(R)) ×Hom(π1(S),SLd(R)).

Let {γi}
∞

i=1 ⊂ π1(S) be an ordering of the collection of (conjugacy classes of) elements of π1(S)
which are represented by simple, non-separating curves, and define, for each n,

Vn(S) =
{
(ρ, σ) ∈ V(S) | Tr(ρ(γi)) = Tr(σ(γi)) if i 6 n

}
and let

V∞ =

∞⋂
n=1

Vn.

Then each Vn(S) is a subvariety of V(S) and by the Noetherian property of polynomial rings,
there exists N so that VN = V∞. We define Ld(S) = {γi}

N
i=1.

There exists a component H̃d(S) of Hom(π1(S),SLd(R)) consisting of lifts of Hitchin repre-
sentations so that Hd(S) is identified with the quotient of H̃d(S) by SLd(R), see Hitchin [17].
Since traces of elements in images of (lifts of) Hitchin representations are non-zero, for all
γ ∈ π1(S), Tr(ν(γ)) is either positive for all ν ∈ H̃d(S) or negative for all ν ∈ H̃d(S), for all
γ ∈ π1(S). Therefore, if the marked trace spectra of ρ, σ ∈ Hd(S) agree on Ld(S), they admit lifts
ρ̃ and σ̃ in H̃d(S) so that (ρ̃, σ̃) ∈ VN. Since VN = V∞, the marked length spectra of ρ and σ agree
on all simple, non-separating curves. Therefore, by Theorem 7.4, ρ = σ ∈ Hd(S). �
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8. Isometries of intersection

In this section, we investigate isometries of the intersection function which is used to construct
the pressure metric on the Hitchin component. Our main tool will be Bonahon’s theory of
geodesic currents and his reinterpretation of Thurston’s compactification of Teichmüller space
in this language, see Bonahon [2].

8.1. Intersection and the pressure metric. Given ρ ∈ Hd(S), let

RT(ρ) =
{
[γ] ∈ [π1(S)] | Lγ(ρ) 6 T

}
be the set of conjugacy classes of elements of π1(S) whose images have length at most T. One
may then define the entropy

h(ρ) = lim
T→∞

log(#RT(ρ))
T

.

Given ρ, σ ∈ Hd(S), their intersection is given by

I(ρ, σ) = lim
T→∞

1
#RT(ρ)

∑
[γ]∈RT(ρ)

Lγ(σ)
Lγ(ρ)

.

and their renormalized intersection is given by

J(ρ, σ) =
h(σ)
h(ρ)

I(ρ, σ).

One may show that all the quantities above give rise to analytic functions.

Theorem 8.1. (Bridgeman–Canary–Labourie–Sambarino [6, Thm. 1.3]) If S is a closed surface
of genus greater than 1, the entropy h, the intersection I, and renormalized intersection J are analytic
functions onHd(S),Hd(S) ×Hd(S) andHd(S) ×Hd(S) respectively.

Let Jρ : Hd(S) → R be defined by Jρ(σ) = J(ρ, σ). The analytic function Jρ has a minimum
at ρ (see [6, Thm. 1.1]) and hence its Hessian gives rise to an non-negative quadratic form
on Tρ(Hd(S)), called the pressure metric. Bridgeman, Canary, Labourie and Sambarino proved
that the resulting quadratic form is positive definite. A result of Wolpert [32] implies that the
restriction of the pressure metric to the Fuchsian locus is a multiple of the classical Weil-Petersson
metric. (See [7] for a survey of this theory.)

Theorem 8.2. (Bridgeman–Canary–Labourie–Sambarino [6, Cor. 1.6]) If S is a closed surface of
genus greater than 1, the pressure metric is a mapping class group invariant, analytic, Riemannian
metric onHd(S) whose restriction to the Fuchsian locus is a multiple of the Weil-Petersson metric.

Recall that a diffeomorphism f : Hd(S) → Hd(S) is said to be an isometry of intersection if
I( f (ρ), f (σ)) = I(ρ, σ) for all ρ, σ ∈ Hd(S). Let IsomI(Hd(S)) denote the group of isometries of
I. Notice that, by construction, the extended mapping class group Mod(S) is a subgroup of
IsomI(Hd(S)). (The extended mapping class group Mod(S) can be identified with the group
Out(π1(S)) of outer automorphisms of π1(S) and acts naturally onHd(S) by pre-composition.)

The entire discussion of intersection, renormalized intersection and the pressure metric
restricts to H(S,G) when G is PSp(2d,R), PSO(d, d + 1), or G2,0.
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8.2. Basic properties. We first show that isometries of intersection preserve entropy and hence
preserve renormalized intersection, so are isometries of the pressure metric.

Proposition 8.3. If S is a closed orientable surface of genus greater than 1, G is PSLd(R), PSp(2d,R),
PSO(d, d + 1), or G2,0 and f : H(S,G)→H(S,G) is an isometry of intersection I, then h(ρ) = h( f (ρ))
for all ρ ∈ H(S,G). Therefore, J( f (ρ), f (σ)) = J(ρ, σ) for all ρ, σ ∈ H(S,G), and f is an isometry of
H(S,G) with respect to the pressure metric.

Proof. Suppose that ρ ∈ H(S,G), v ∈ Tρ(H(S,G)) and v = d
dtρt =

•ρ0 for a smooth path {ρt}t∈(−1,1)
inHd(S). Then,

Iρ(ρt) = I(ρ, ρt) = I( f (ρ), f (ρ(t)) = I f (ρ)( f (ρt)),

so

DIρ(v) = DI f (ρ)(D fρ(v)).

Since Jρ has a minimum at ρ, DJρ(v) = 0, so

DJρ(v) =
Dhρ(v)

h(ρ)
Iρ(ρ) +

h(ρ)
h(ρ)

DIρ(v) =
Dhρ(v)

h(ρ)
+ DIρ(v) = 0

which implies that

DIρ(v) = −
Dhρ(v)

h(ρ)
= −D(log h)(v).

Thus, for all v ∈ Tρ(H(S,G))

D(log h)(v) = D(log(h ◦ f ))(v),

so (h ◦ f )/h is constant, sinceH(S,G) is a connected manifold. However, since h is a bounded
positive function, it must be that case that h ◦ f = h.

It follows, by the definition of renormalized intersection, that f preserves renormalized
intersection. Since the pressure metric is obtained by considering the Hessian of renormalized
intersection, f is also an isometry ofH(S,G) with respect to the pressure metric. �

Potrie and Sambarino [28] proved that the entropy function achieves its maximum exactly on
the Fuchsian locus, so we have the following immediate corollary.

Corollary 8.4. If S is a closed orientable surface of genus greater than 1, G is PSLd(R), PSp(2d,R),
PSO(d, d + 1), or G2,0 and f : H(S,G)→H(S,G) is an isometry of intersection I, then f preserves the
Fuchsian locus.

8.3. Geodesic currents. We identify S with a fixed hyperbolic surface H2/Γ, which in turn
identifies π1(S) with Γ and ∂∞π1(S) with ∂∞H2. One can identify the space G(H2) of unoriented
geodesics inH2 with (∂∞H2

× ∂∞H2
− ∆)/Z2, where ∆ is the diagonal in ∂∞H2

× ∂∞H2 and Z2
acts by interchanging coordinates. A geodesic current on S is a Γ-invariant Borel measure on
G(H2) and C(S) is the space of geodesic currents on S, endowed with the weak∗ topology.

If α is a closed geodesic on S, one obtains a geodesic current δα by taking the sum of the
Dirac measures on the pre-images of α. The set of currents which are scalar multiples of closed
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geodesics is dense in C(S), see Bonahon [2, Proposition 2]. If ρ ∈ T (S) = H2(S) has associated
limit map ξρ : ∂π1(S)→ ∂H2, one defines the Liouville measure of ρ by

mρ([a, b] × [c, d]) =

∣∣∣∣∣∣∣log

(
ξρ(a) − ξρ(c)

)(
ξρ(b) − ξρ(d)

)(
ξρ(a) − ξρ(d)

)(
ξρ(b) − ξρ(c)

) ∣∣∣∣∣∣∣ .
Theorem 8.5. (Bonahon [2, Propositions 3, 14, 15]) Let S be a closed oriented surface of genus g > 2
and ρ ∈ T (S) = H2(S). Then there exist continuous functions `ρ : C(S)→ R and i : C(S) × C(S)→ R
which are linear on rays such that if α and β are closed geodesics, then

i(mρ, δα) = `ρ(α), i(mρ,mρ) = π2
|χ(S)|,

and i(α, β) is the geometric intersection between α and β.

Moreover, Bonahon defines an embedding

Q : T (S)→ PC(S)

of Teichmüller space into the space of projective classes of geodesic currents given by Q(ρ) = [mρ].
Bonahon shows that the closure of Q(T (S)) is homeomorphic to a closed ball of dimension 6g−6,
and the boundary of Q(T (S)) is the spacePML(S) of projective classes of measured laminations.
(Recall that a measured lamination may be defined to be a geodesic current of self-intersection 0.)
In particular, the geodesic current associated to any simple closed curve lies in the boundary of
Q(T (S)). Moreover, Bonahon [2, Theorem 18] shows that this compactification of Teichmüller
space agrees with Thurston’s compactification.

8.4. Length functions for Hitchin representations. If ρ ∈ Hd(S), then there is a Hölder function
fρ : T1S→ R+ such that if α is a closed oriented geodesic on S = H2/Γ, then∫

α
fρ dt = Lα(ρ)

where dt is the Lebesgue measure along α ⊂ T1(S), see [6, Prop. 4.1] or Sambarino [30, Sec. 5].
Given µ ∈ C(S), one may define a Γ-invariant measure µ̃ on T1H2 which has the local form µ× dt
where dt is Lebesgue measure along the flow lines of T1H2 (which are oriented geodesics in H2),
so µ̃ descends to a measure µ̂ on T1(S). One may then define a length function `ρ : C(S)→ R by
letting

`ρ(µ) =

∫
T1(S)

fρ dµ̂.

Notice that if α is a simple closed geodesic on S, then

`ρ(δα) = LH
α (ρ) = Lα(ρ) + Lα−1(ρ)

since δ̂α is Dirac measure support on the closed orbits of geodesics associated to α and α−1.
Moreover, by the definition of the weak∗ topology, `ρ is clearly continuous, since T1S is compact.

Recall that (see Bowen [3] or Margulis [25]) if σ ∈ T (S) = H2(S) then the Liouville current
satisfies

mσ

`σ(mσ)
= lim

T→∞

1
#RT(σ)

∑
RT(σ)

δα
`σ(δα)

= lim
T→∞

1
#RT(σ)

∑
RT(σ)

δα
2Lα(σ)

.
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Since τd multiplies the logarithm of the spectral radius by d − 1, if ρ ∈ Hd(S), then

`ρ(mσ)
`σ(mσ)

= lim
T→∞

1
#RT(σ)

∑
RT(σ)

LH
α (ρ)

2Lα(σ)

= (d − 1) lim
T→∞

1
#R(d−1)T(τd ◦ σ)

∑
R(d−1)T(τd◦σ)

Lα(ρ)
Lα(τd ◦ σ)

= (d − 1) I(τd ◦ σ, ρ).

Here we use the fact that, since σ ∈ T (S), Lα(σ) = Lα−1(σ), so

LH
α (ρ)

2Lα(σ)
+

LH
α−1(ρ)

2Lα−1(σ)
=

Lα(ρ)
Lα(σ)

+
Lα−1(ρ)
Lα−1(σ)

for all α ∈ π1(S).

8.5. Isometries of intersection and the simple Hilbert length spectrum. We next observe that
any isometry of intersection preserves the simple marked Hilbert length spectrum.

Proposition 8.6. If S is a closed surface of genus g > 2, G = PSLd(R), PSp(2d,R), PSO(d, d + 1), or
G2,0 and f : H(S,G)→ H(S,G) is an isometry of intersection, then there exists an element φ of the
extended mapping class group so that if ρ ∈ H(S,G), then ρ and f ◦ φ(ρ) have the same simple marked
Hilbert length spectrum.

Proof. Recall, from Corollary 8.4, that f preserves the Fuchsian locus. Since any isometry of
T (S) with the Weil-Petersson metric agrees with an element of the extended mapping class
group, by a result of Masur-Wolf [26], and the restriction of the pressure metric to the Fuchsian
locus is a multiple of the Weil-Petersson metric, the restriction of f to the Fuchsian locus agrees
with the action of an element φ of the extended mapping class group. We can thus consider
f̂ = f ◦ φ−1, which is an isometry of the intersection function that fixes the Fuchsian locus.

If α ∈ π1(S) is represented by a simple curve, we may choose a sequence {σn} in T (S) such
that {Q(σn)} converges to [δα] ∈ PC(S), so there exists a sequence {cn} of real numbers so that
lim cn = +∞ and

lim
mσn

cn
= δα.

Therefore, if ρ ∈ H(S,G) ⊂ Hd(S), then

LH
α (ρ) = `ρ(δα) = lim `ρ

(mσn

cn

)
= lim

(
(d − 1)`σn(mσn)

cn
I(τd ◦ σn, ρ)

)
.

By Theorem 8.5, as σn ∈ T (S), then `σn(mσn) = i(mσn ,mσn) = π2
|χ(S)|. If ρ ∈ H(S,G) and α ∈ π1(S),

then since I(τd ◦ σn, ρ) = I(τd ◦ σn, f̂ (ρ)) for all n, LH
α (ρ) = LH

α ( f̂ (ρ)). Therefore, ρ and f̂ (ρ) have
the same simple marked Hilbert length spectrum. �

Recall that if ρ lies inH(S,G) and G is PSp(2d,R), PSO(d, d + 1) or G2,0, then LH
α (ρ) = 2Lα(ρ)

for all α ∈ π1(S). Therefore, we may combine Theorem 1.1 and Proposition 8.6 to obtain:
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Corollary 8.7. If S is a closed surface of genus g > 3, then any isometry of the intersection I on
H(S,PSp(2d,R)),H(S,PSO(d, d + 1)), orH(S,G2,0) agrees with an element of the extended mapping
class group.

Notice that Corollary 8.7 is a generalization of Theorem 1.3 which was stated in the introduc-
tion.

9. Hilbert Length Rigidity

Proposition 8.6 suggests the following potential generalization of our main simple length
rigidity result.

Conjecture: If ρ, σ ∈ Hd(S) have the same marked simple Hilbert length spectrum then they either
agree or differ by the contragredient involution.

We establish this conjecture when d = 3.

Theorem 9.1. If S is a closed orientable surface of genus greater than 2, ρ, σ ∈ H3(S) and LH
α (ρ) = LH

α (σ)
for any α ∈ π1(S) which is represented by a simple non-separating curve, then ρ = σ or ρ = σ∗.

The classification of the isometries of intersection onH3(S), Theorem 1.4, is an immediate
consequence of Theorem 9.1 and Proposition 8.6.

Proof. Notice that PSL3(R) = SL3(R) and that if γ ∈ π1(S), then all the eigenvalues of ρ(γ) are
positive, since eigenvalues vary continuously overH3(S) and are positive on the Fuchsian locus.
In particular, if LH

α (ρ) = LH
α (σ), then

λ1(ρ(α))
λ3(ρ(α))

=
λ1(σ(α))
λ3(σ(α))

> 1.

We first show that for individual elements the traces and eigenvalues either agree or are
consistent with the contragredient involution.

Lemma 9.2. If α and β are represented by simple, non-separating based loops on S which intersect only
at the basepoint and have geometric intersection one, and LH

αnβ(ρ) = LH
αnβ(σ) for all n, then either

(1) λi(ρ(α)) = λi(σ(α)) for all i, so Tr(ρ(α)) = Tr(σ(α)), or
(2) λi(ρ(α)) = λi(σ(α−1)) = λi(σ∗(α)) for all i, so Tr(ρ(α)) = Tr(σ∗(α)).

Proof. As in the proof of Lemma 6.3, let A = ρ(α), B = ρ(β) and AnB = ρ(αnβ) and λi(n) = λi(AnB).
Similarly, let Â = σ(α), B̂ = σ(β) and ÂnB̂ = σ(αnβ) and let λ̂i(n) = λi(ÂnB̂). If (bi

j) is the matrix of

B with respect to the basis {ei(A)}, then, b1
1, b1

2, and b2
1 are all non-zero by Lemma 6.4, so Lemma

5.1 implies that
λ1(n)
λn

1
= b1

1 +
b1

2b2
1

b1
1

(
λ2

λ1

)n
+ o

((
λ2

λ1

)n)
where λi = λi(A). Similarly, applying Lemma 5.1 to ρ∗ and noting that λ−1

i (ρ∗(γ)) = λ4−i(ρ(γ))
for all γ ∈ π1(S), gives that

λn
3

λ3(n)
= d1

1 +
d1

2d2
1

d1
1

(
λ3

λ2

)n
+ o

((
λ3

λ2

)n)
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where (di
j) is the matrix of (B−1)T in the basis {ei((A−1)T)}.

Taking the product of the previous two equations gives(
λ1(n)
λ3(n)

) (
λ3

λ1

)n
=b1

1d1
1 +

d1
1b1

2b2
1

b1
1

(
λ2

λ1

)n
+

b1
1d1

2d2
1

d1
1

(
λ3

λ2

)n

+ o
((
λ3

λ2

)n)
+ o

((
λ2

λ1

)n)
.

(5)

One obtains an analogous equality for σ, and since the left hand sides are equal by assumption,
we see that

b1
1d1

1 +
d1

1b1
2b2

1

b1
1

(
λ2

λ1

)n
+

b1
1d1

2d2
1

d1
1

(
λ3

λ2

)n
+ o

((
λ3

λ2

)n)
+ o

((
λ2

λ1

)n)

=b̂1
1d̂1

1 +
d̂1

1b̂1
2b̂2

1

b̂1
1

(
λ̂2

λ̂1

)n

+
b̂1

1d̂1
2d̂2

1

d̂1
1

(
λ̂3

λ̂2

)n

+ o
((
λ̂3

λ̂2

)n)
+ o

((
λ̂2

λ̂1

)n)
(6)

where λ̂i = λi(Â) and (b̂i
j) and (d̂i

j) are the matrix representatives of B̂ and (B̂−1)T with respect to

the bases {ei(Â)} and {ei((A−1)T)} respectively. Since lim
λn

i+1
λn

i
= 0 and lim

λ̂n
i+1

λ̂n
i

= 0 for i = 1, 2, we

see that b1
1d1

1 = b̂1
1d̂1

1.
Lemma 6.4 implies that all the coefficients in Equation (6) are non-zero. We further show that

they are all positive.

Lemma 9.3. Suppose that α and β are represented by simple based loops on S which intersect only at
the basepoint and have geometric intersection one. If ρ ∈ H3(S) and B = (b j

i ) is a matrix representing
ρ(β) in the basis {ei(ρ(α)}, then b1

1, b1
2b2

1 are positive.

Proof. We may normalize ρ so that {ei(ρ(α)} is the standard basis for R3. The coefficients b1
1, b1

2
and b2

1 give non-zero functions onH3(S), so have well-defined signs. If σ0 = τ3 ◦ ρ0 lies in the
Fuchsian locus, then we may assume that

σ0(α) = τ3

([
λ 0
0 λ−1

])
=

λ
2 0 0

0 1 0
0 0 λ−2


σ0(β) = τ3

([
a b
c d

])
=

 a2 ab b2

2ac ad + bc 2bd
c2 cd d2


Since α and β intersect essentially, the fixed points z1 and z2 of z→ az+b

cz+d lie on opposite sides of
0 in R̂ = ∂∞H2. Since z1 and z2 are the roots of cz2 + (d − a)z + b = 0, we see that b

c = −z1z2 > 0,
so bc > 0. Therefore, b1

1(σ0) = a2 > 0 and b2
1b1

2(σ0) = 2a2bc > 0. It follows that b1
1 and b2

1b1
2 are

positive on all ofH3(S). �
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Notice that λ3
λ2

= λ2
λ1

(ρ(α−1)) and λ̂3

λ̂2
= λ2

λ1
(σ(α−1)). Then, by considering the second order terms

in Equation 6, we see that there exists ε1, ε2 ∈ {±1} such that

λ2

λ1
(ρ(αε1)) =

λ2

λ1
(σ(αε2)).

Since we have assumed that
λ3

λ1
(ρ(αε1)) = LH

αε1 (ρ) = LH
αε1 (σ) = LH

αε2 (σ) =
λ3

λ1
(σ(αε2))

and
(λ1λ2λ3)(ρ(αε1)) = (λ1λ2λ3)(σ(αε2)) = 1,

we see that
(
λ1(ρ(αε1)

)3 = (λ1(σ(αε2))3, so λ1(ρ(αε1)) = λ1(σ(αε2)), hence λi(ρ(αε1)) = λi(σ(αε2))
for all i. If ε1 = ε2, then we are in case (1), while if ε1 = −ε2 we are in case (2).

�

We next show that if Tr(ρ(α)) = Tr(σ(α)) and Tr(ρ(α)) , Tr(σ∗(α)), then we may control the
traces of images of simple based loops having geometric intersection one with α.

Lemma 9.4. Suppose that S is a closed orientable surface of genus greater than 1, ρ, σ ∈ H3(S) and
LH
γ (ρ) = LH

γ (σ) for any γ ∈ π1(S) which is represented by a simple, non-separating curve. If α ∈ π1(S)
is represented by a simple, non-separating based loop,

Tr(ρ(α)) = Tr(σ(α)) and Tr(ρ(α)) , Tr(σ∗(α))

and β ∈ π1(S) is represented by a simple non-separating based loop intersecting α only at the basepoint
and having geometric intersection one with α, then Tr(ρ(β)) = Tr(σ(β)).

Proof. We adopt the notation of Lemma 9.2, and notice that Lemma 9.2 implies that that
λi = λi(ρ(α)) = λi(σ(α)) = λ̂i for all i.

If there is an infinite sequence {nk} of positive numbers such that Tr(ρ(αnkβ)) = Tr(σ(αnkβ)),
then,

λnk
1 b1

1 + λnk
2 b2

2 + λnk
3 b3

3 = λnk
1 b̂1

1 + λnk
2 b̂2

2 + λ̂nk
3 b̂3

3

for all nk. So, by considering the leading terms, we see that b1
1 = b̂1

1. Considering the remaining
terms, we conclude that b2

2 = b̂2
2 and b3

3 = b̂3
3, so Tr(ρ(β)) = Tr(σ(β)).

If not, then, by Lemma 9.2, Tr(ρ(αnβ)) = Tr(σ∗(αnβ)) for all sufficiently large n, so

λn
1b1

1 + λn
2b2

2 + λn
3b3

3 = λ−n
3 d̂1

1 + λ−n
2 d̂2

2 + λ−n
1 d̂3

3

for all sufficiently large n. Since b1
1 , 0 and d̂1

1 , 0, we conclude, by considering leading
terms, that λ1 = λ−1

3 , so λ2 = 1. However, this implies that λi(ρ(α)) = λi(σ∗(α−1)) for all i, so
Tr(ρ(α)) = Tr(σ∗(α)), which contradicts our assumptions. �

If Tr(ρ(α)) = Tr(σ(α)) for any α represented by a simple non-separating curve, then Theorem
1.2 implies that ρ = σ. Similarly, if Tr(ρ(α)) = Tr(σ∗(α)) for any α represented by a simple non-
separating curve, then Theorem 1.2 implies that ρ = σ∗. Therefore, we may assume that there
exists a simple non-separating based loop α so that Tr(ρ(α)) = Tr(σ(α)) and Tr(ρ(α)) , Tr(σ∗(α)).

Let β be a simple, non-separating based loop intersecting α only at the basepoint which
has geometric intersection one with β. Since Tr(ρ(α)) , Tr(σ∗(α)) and Tr(ρ(β)) and Tr(σ(β)) are
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non-zero, there exists n so that Tr(ρ(αnβ)) , Tr(σ∗(αnβ)). Moreover, Lemma 9.4 implies that
Tr(ρ(αnβ)) = Tr(σ(αnβ)). Extend α, αnβ to a standard set of generators S = {α1, β1, . . . , αg, βg} so
that α = α1 and αnβ = β1.

The remainder of the proof now mimics the proof of Theorem 1.2. Notice that for the
standard generators, if j > i > 1, then αiα j and αiβ−1

j can, and for the remainder of the proof
will be, represented by simple non-separating based loops which intersect α1 and αi only at
the basepoint, with geometric intersection zero. There exists a based loop γ which intersects
each curve in the collection {α1, α2, α2α3, . . . , α2αg, α2β−1

3 , . . . , α2β−1
g } only at the basepoint and

with geometric intersection one, see Figure 4. Moreover, if η is either α2αi or α2β−1
i , with i > 3,

then every curve of the form ηpα
q
2γα

r
1 is freely homotopic to a simple based loop, in the based

homotopy class of αr
1η

pα
q
2γ, which has geometric intersection one with α1 and intersects α1 only

at the basepoint. It then follows from Lemma 9.4 that

Tr(ρ(ηpα
q
2γα

r
1)) = Tr(σ(ηpα

q
2γα

r
1))

for all p, q, r ∈ Z. Proposition 7.3 then implies that ρ and σ are conjugate on 〈η, α2, α1〉. In
particular, we may assume that ρ and σ agree on 〈α1, α2, α3〉 = 〈α2α3, α2, α1〉. If η = α2αi, with

α1
α2

α2α3

γ

Figure 4. The curves α1, α2, α2α3 and γ on a surface of genus 3

i > 4, then, since ρ and σ agree on 〈α1, α2, α3〉 and are conjugate on 〈η, α2, α1〉, Lemma 7.5 implies
that they agree on η and hence on α−1

2 η = αi. Similarly, if η = α2β−1
i , with i > 3, we can use

Lemma 7.5 to show that ρ and η agree on η and hence on βi.
It remains to check that ρ and σ agree on β1 and β2. Recall that there exists a homeomorphism

h : S → S so that h ◦ αi = βi and h ◦ βi = αi. Then ρ̂ = ρ ◦ h∗ and σ̂ = σ ◦ h∗ are Hitchin
representations. The above argument shows that ρ̂ and σ̂ are conjugate on 〈α1, α2, α3, β3〉, which
implies that ρ and σ are conjugate on 〈β1, β2, β3, α3〉. Since ρ and σ agree on α3 and on β3α3β−1

3
(which have non-intersecting axes), Lemma 7.5 implies that ρ and σ agree on β1 and β2, which
completes the proof. �

10. Infinitesmal Simple Length Rigidity

In this section, we prove that the differentials of simple length functions generate the cotangent
space of a Hitchin component. In earlier work [6, Prop. 10.3] we showed that the differentials
of all length functions generate the cotangent space, and that result played a key role in the
proof that the pressure metric on the Hitchin component is non-degenerate.

Proposition 10.1. Suppose that S is a closed orientable surface of genus greater than 2 and ρ ∈ Hd(S).
If v ∈ Tρ(Hd(S)) and DLα(v) = 0 for every simple non-separating curve α, then v = 0.

Moreover, if D Trα(v) = 0 for every simple non-separating curve α, then v = 0.
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Proof. We recall that there exists a component H̃d(S) of Hom(π1(S),SLd(R)) which is an analytic
manifold, so that the projection map π : H̃d(S) → Hd(S) is real analytic and is obtained by
quotienting out by the action of SLd(R) by conjugation, see Hitchin [17]. Any smooth path in
Hd(S) lifts to a smooth path in H̃d(S). The real-valued functions T̃rα and λ̃i,α on H̃d(S) given
by T̃rα(ρ̃) = Tr(ρ̃(α)) and λ̃i,α(ρ̃) = λi(ρ̃(α)) are analytic and SLd(R)-invariant, so descend to real
analytic functions Trα and λi,α on Hd(S). (Notice that if we chose a different component of
Hom(π1(S),SLd(R)) as H̃d(S), then Trα and λi,α could differ up to sign.)

The proof of Proposition 10.1 has the same basic structure as the proof of our simple length
rigidity result. We first establish an infinitesimal version of Theorem 6.1.

Lemma 10.2. If S is a closed orientable surface of genus more than 1, ρ ∈ Hd(S) and v ∈ THd(S)
then DLα(v) = 0 for every simple non-separating curve α if and only if D Trα(v) = 0 for every simple
non-separating curve α. In both cases Dλi,α(v) = 0 for all i.

Proof. Let {ρt}t∈(−1,1) be an analytic path in H̃d(S) such that if
•ρ0 = d

dt

∣∣∣
t=0ρt then dπ(

•ρ0) = v.
First assume that DLα(v) = 0 for every simple non-separating curve α. Choose a simple

based loop β which intersects α only at the basepoint and has geometric intersection one with α.
Let A(t) = ρt(α), B(t) = ρt(β) and λi(t) = λi,α(ρt). Let λ(n, t) = |λ1(A(t)nB(t))| and notice that our
assumptions imply that

•

λ(n, 0) =
d
dt

∣∣∣∣
t=0
λ(n, t) = 0

for all n. Let (bi
j(t)) be the matrix representative of B(t) in the basis {ei(A(t))} and notice that we

may choose {ei(A(t))} to vary analytically, so that the coefficients (bi
j(t)) vary analytically.

If v ∈ Rd−1, let D(v) ∈ SLd(R) be chosen so that its matrix is diagonal with respect to the basis
{ei(A(t))} with diagonal entries (1, v1, . . . , vd−1), then M(v, t) = D(v)B(t) depends analytically on v
and t. Notice that M(~0, 0) has a simple eigenvalue b1

1(0) with eigenvector e1. By Lemma 5.3 there
exists an open neighborhood V of the origin in Rd−1

×R and an an analytic function F : V → R
so that

λ1(M(v, t)) = F(v, t).
Since

A(t)nB(t)
λ1(t)n = M

((
λ2(t)
λ1(t)

)n

, . . . ,

(
λd(t)
λ1(t)

)n

, t
)

and ((
λ2(t)
λ1(t)

)n

, . . . ,

(
λd(t)
λ1(t)

)n

, t
)
∈ V,

for all sufficiently large n and t sufficiently close to 0,

λ(n, t)
λ1(t)n =

λ1(An(t)B(t))
λ1(t)n = λ1

(
An(t)B(t)
λ1(t)n

)
= F

((
λ2(t)
λ1(t)

)n

, . . . ,

(
λd(t)
λ1(t)

)n

, t
)
.

Letting ui(t) =
λi+1(t)
λ1(t) , we see that

λ(n, t) = λ1(t)nF (u1(t)n, . . . ,ud−1(t)n, t) .
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Since
•

λ1(0) = 0 and
•

λ(n, 0) = 0,

d
dt

∣∣∣∣
t=0

F (u1(t)n, . . . ,ud−1(t)n, t) = 0

for all large enough n. Therefore,

∂F
∂t

(u1(0)n, . . . ,ud−1(0)n, 0) +

d−1∑
i=1

∂F
∂vi

(u1(0)n, . . . ,ud−1(0)n, 0)nun−1
i (0) •ui(0) = 0, (7)

for all large enough n, so
∂F
∂t

(0, . . . , 0, 0) = 0.

Moreover, since ∂F
∂t is analytic,

∂F
∂t

(u1(0)n, . . . ,ud−1(0))n, 0) =

d−1∑
i=1

(
∂2F
∂vi∂t

(~0, 0)ui(0)n + o(ui(0)n)
)

so, since 1 > |u1(0)| > |ui(0)| > 0 for all i > 2,

lim
n→∞

1
nu1(0)n−1

∂F
∂t

(u1(0)n, . . . ,ud−1(0))n, 0) = lim
n→∞

d−1∑
i=1

ui(0)n

nu1(0)n−1

(
∂2F
∂vi∂t

(0, . . . , 0, 0)
)

= 0

Equation (7) then implies that

lim
n→∞

1
nu1(0)n−1

d−1∑
i=1

∂F
∂vi

(u1(0)n, . . . ,ud−1(0))n, 0)nun−1
i (0) •ui(0)

 =
∂F
∂v1

(0, . . . , 0, 0) •u1(0) = 0

As in the proof of Lemma 5.1, we calculate that

∂F
∂v1

(0, . . . , 0, 0) =
d
ds

∣∣∣∣
s=0

F(s, 0, . . . , 0) =
d
ds

∣∣∣∣
s=0
λ1 (D(1, s, 0, . . . , 0)B(0)) = λ1

([
b1

1(0) b1
2(0)

sb2
1(0) sb2

2(0)

])
,

so
∂F
∂v1

(~0, 0) =
b1

2(0)b2
1(0)

b1
1(0)

.

Lemma 6.4 implies that b1
1(0), b1

2(0) and b2
1(0) are non-zero, so ∂F

∂v1
(0, . . . , 0, 0) , 0. Therefore,

•u1(0) = 0 and, since
•

λ1(0) = 0, we have

0 =
•u1(0) =

d
dt

∣∣∣∣∣∣
t=0

(
λ2(t)
λ1(t)

)
=

•

λ2(0)λ1(0)−
•

λ1(0)λ2(0)
λ1(0)2 =

•

λ2(0)
λ1(0)

,

so
•

λ2(0) = 0.
We may iteratively consider the 1-parameter families of representations given by {Ek(ρt)} and

apply the same analysis to conclude that
•

λi,α(0) = 0 for all i, and thus that D Trα(v) = 0.
Now assume that D Trα(v) = 0 for every α ∈ π1(S) represented by a simple non-separating

curve. Given a simple, non-separating curve α represented by a simple based loop, we again
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choose a simple based loop β which intersects α only at the basepoint and has geometric
intersection one with α. Notice that

Tr(ρt(αnβ)) =

d∑
i=1

λn
i (ρt(α)) Tr(pi(ρt(α))ρt(β)) =

d∑
i=1

hi(t)λn
i (t).

where hi(t) = Tr(pi(ρt(α))ρt(β)) , 0 for all t. Differentiating, and noting that D Trαnβ(v) = 0 for all
n, we see that

0 =

d∑
i=1

•

hi(0)λn
i (0) + nhi(0)

•

λi(0)λi(0)n−1

for all n. Since hi(0) , 0 and λi(0) , 0, it must be that
•

h1(0) = 0 and
•

λ1(0) = 0, so DLα(v) = 0. �

We next generalize the proof of Theorem 7.1 to obtain a criterion guaranteeing that v is
infinitesmally trivial on its restriction to certain 3-generator subgroups.

Lemma 10.3. Suppose that ρ ∈ Hd(S), v ∈ Tρ(Hd(S)) and DLη(v) = 0 for every simple non-separating
curve η on S. If α, β, δ,∈ π1(S) are represented by simple based loops which intersect only at the basepoint,
and are freely homotopic to a collection of mutually disjoint and non-parallel, non-separating closed
curves which do not bound a pair of pants in S, and {ρt} is a path in H̃d(S) so that Dπ(

•ρ0) = v, then
there exists a path {Ct} in SLd(R), so that C0 = I and if η ∈ 〈α, β, δ〉, then

d
dt

∣∣∣∣
t=0

(Ctρt(η)C−1
t ) = 0 ∈ sl(n,R).

Proof. Lemma 7.2 guarantees that there exist based loops α̂, β̂, γ and δ̂ as in Figure 1, which
intersect only at the basepoint, so that α̂, β̂ and δ̂ are freely homotopic to a collection of mutually
disjoint, non-parallel, non-separating curves and γ has geometric intersection one with each
such that

〈α, β, δ〉 = 〈α̂, β̂, δ̂〉 .

We may thus assume that α, β and δ already have this form.
We may also, by possibly re-ordering α, β and δ, assume that αpβqγδr is represented by a

simple non-separating curve for all p, q, r ∈ Z. We next generalize the proof of Proposition 7.3

to show that D
(

Ti, j,k(α,β,δ)
T j,k(β,δ)

)
(v) = 0 for all i, j and k.

Recall that

Tr(ρ(αpβqγδr)) =

d∑
i=1

λi,α(ρ)p Tr
(
pi(ρ(α))ρ(βqγδr)

)
.

Differentiating and noting that, by Lemma 10.2, D Trαpβqγδr(v) = 0 for all p, q and r and Dλi,α(v) = 0
for all i, one sees that

d∑
i=1

λi,α(ρ)pDTi,0(α, βqγδr)(v) = 0

for all p. By examining terms of different orders and taking limits, we see that

DTi,0(α, βqγδr)(v) = 0
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for all i, q and r. Repeating, as in the proof of Proposition 7.3, we find that

DTi, j,0,k(α, β, γ, δ)(v) = 0

for all i, j, and k. Similarly, by considering βqγδr, we see that

DT j,0,k(β, γ, δ)(v) = 0

for all j and k.
Recall, from part (4) of Proposition 4.3, that

Ti, j,0,k(α, β, γ, δ)(ρ) = T j,0,k(β, γ, δ)(ρ)
(

Ti, j,k(α, β, δ)(ρ)

T j,k(β, δ)(ρ)

)
, 0

for all i, j and k. Since we have established that the two leftmost terms in this expression are
non-zero and have derivative 0 in the direction v, we conclude that

D
(

Ti, j,k(α, β, δ)

T j,k(β, δ)

)
(v) = 0

for all i, j and k.
Let ai(t) = ei(ρt(α)), ai(t) = ei(ρt(α)), b j(t) = e j(ρt(β)), b j(t) = e j(ρt(β)), dk(t) = ek(ρt(δ)) and

dk(t) = ek(ρt(δ)) for all i, j, k. We will assume throughout, by replacing {ρt} by {CtρtC−1
t }where

{Ct} is a path in SLd(R) so that C0 = I, that ai(t) are constant as functions of t for all i, b1(t)
is constant as a function of t, and by scaling the bases, that 〈ai(t)|b1(t)〉 = 1 for all i and t,
〈a1(t)|b j(t)〉 = 1 for all j and t, and 〈dk(t)|b1(t)〉 = 1 for all k and t. Since ai(t) is constant and
d
dt

∣∣∣
t=0λi,α(ρt) = 0, by Lemma 10.2, d

dt

∣∣∣
t=0ρt(α) = 0.

Recall, from Proposition 4.3, that

Ti, j,k(α, β, δ)(ρt)

T j,k(β, δ)(ρt)
=
〈ai(t)|b j(t)〉 〈dk(t)|ai(t)〉

〈dk(t)|b j(t)〉
. (8)

By considering Equation (8) when j = 1, we see that

Ti,1,k(α, β, δ)(ρt)
T1,k(β, δ)(ρt)

= 〈dk(t)|ai(t)〉 ,

so, since the left-hand side has derivative 0 at 0 and ai(t) is constant for all i,

d
dt

∣∣∣∣
t=0

(
〈dk(t)|ai(t)〉

)
= 〈

•

dk(0)|ai(0)〉 = 0

for all i and k. Therefore,
•

dk(0) = 0 for all k, so
•

dk = 0 for all k. Since we also know, from Lemma
10.2, that d

dt

∣∣∣
t=0λi,δ(ρt) = 0 for all t, it follows that d

dt

∣∣∣
t=0ρt(δ) = 0.

Considering Equation (8) when i = 1, one obtains

T1, j,k(α, β, δ)(ρt)

T j,k(β, δ)(ρt)
=
〈a1(t)|b j(t)〉 〈dk(t)|a1(t)〉

〈dk(t)|b j(t)〉
=
〈dk(t)|a1(t)〉
〈dk(t)|b j(t)〉

.
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Since the derivative of the left hand side is 0 at 0, a1(t) is constant, and
•

dk(0) = 0 for all k, we see
that

〈dk(0)|a1(0)〉

〈dk(0)|b j(0)〉2
〈dk(0)|

•

bj(0)〉 = 0,

so 〈dk
|
•

bj(0)〉 = 0 for all j and k, so
•

b j(0) = 0 for all j. We may then argue, just as before, that
d
dt

∣∣∣
t=0ρt(β) = 0. Therefore, d

dt

∣∣∣
t=0ρt(η) = 0 for all η ∈ 〈α, β, δ〉. �

We are now ready to complete the proof of Proposition 10.1. Let S = {α1, β1, . . . , αg, βg} be a
standard generating set for π1(S). By Lemma 10.3, we may choose an analytic family {ρt} in
Hom(π1(S),PSLd(R)) so that dπ(

•ρ0) = v and d
dt

∣∣∣
t=0ρt(γ) = 0 for all η ∈ 〈α1, α2, α3〉.

For any δ ∈ S − {α1, α2, α3, β1, β2}, we may apply Lemma 10.3 to the triple {α1, α2, η} to show
that there exists a family {Ct} in PSLd(R) so that C0 = I and d

dt

∣∣∣
t=0(Ctρt(γ)C−1

t ) = 0 for all
γ ∈ 〈α1, α2, δ〉. In particular,

•

C0ρ0(αi)C−1
0 − C0ρ0(αi)

•

C0 + C0

( d
dt

∣∣∣∣
t=0
ρt(αi)

)
C−1

0 =
•

C0ρ0(αi) − ρ0(αi)
•

C0 = 0,

so [
•

C0, ρ0(αi)] = 0 for i = 1, 2, Thus,
•

C0 is diagonalizable over R with respect to both {ei(ρ0(α1))}
and {ei(ρ0(α2)}.

If
•

C0 , 0, then Rd admits a non-trivial decomposition into eigenspaces of
•

C0 with distinct
eigenvalues. Any such eigenspace W is spanned by a sub-collection of {ei(ρ0(α1))} and by a
sub-collection of {e j(ρ0(α2))}. In particular, some ei(ρ0(α1)) is in the sub-space spanned by a
subcollection of {e j(ρ0(α2))}. Since α1 and α2 are disjoint curves, this contradicts Theorem 1.6.
Therefore,

•

C0 = 0.
Since

•

C0 = 0 and d
dt

∣∣∣
t=0(Ctρt(δ)C−1

t ) = 0, we calculate that

•

C0ρ0(δ)C−1
0 − C0ρ0(δ)

•

C0 + C0

( d
dt

∣∣∣∣
t=0
ρt(δ)

)
C−1

0 =
d
dt

∣∣∣∣
t=0
ρt(δ) = 0.

By considering the subgroups 〈α2, α3, β1〉 and 〈α1, α3, β2〉, we similarly show that

d
dt

∣∣∣∣
t=0
ρt(β1) = 0 and

d
dt

∣∣∣∣
t=0
ρt(β2) = 0

Since d
dt

∣∣∣
t=0ρt(η) = 0 for all η ∈ S,

•ρ0 = 0 ∈ TH̃d(S).

Therefore, v = Dπ
(
•ρ0

)
= 0 as claimed. �

11. Hitchin representations for surfaces with boundary

In this section, we observe that our main simple length rigidity result extends to Hitchin
representations of most compact surfaces with boundary.

If S is a compact surface with boundary, we say that a representation ρ : π1(S)→ PSLd(R)
is a Hitchin representation if ρ is the restriction of a Hitchin representation ρ̂ of π1(DS) into
PSLd(R), where DS is the double of S. Labourie and McShane [20, Section 9] show that this is
equivalent to assuming that ρ is deformable to the composition of a convex cocompact Fuchsian
uniformization of S and the irreducible representation through representations so that the



SIMPLE LENGTH RIGIDITY FOR HITCHIN REPRESENTATIONS 45

image of every peripheral element is purely loxodromic. (Recall that a non-trivial element of
π1(S) is peripheral if it is represented by a curve in ∂S.) Fock and Goncharov [11] refer to such
representations as positive representations.

Theorem 11.1. Suppose that S is a compact, orientable surface of genus g > 0 with p > 0 boundary
components, and (g, p) is not (1, 1) or (1, 2). If ρ and σ are two Hitchin representations of π1(S) of
dimension d and Lρ(α) = Lσ(α) for any α represented by a simple non-separating curve on S, then ρ and
σ are conjugate in PGLd(R).

Notice that our techniques don’t apply to punctured spheres, since they contain no simple
non-separating curves. In the remaining excluded cases, there are no configurations of three
non-parallel simple non-separating closed curves which do not bound a pair of pants.

Proof. We choose a generating set

S = {α1, β1, . . . αg, βg, δ1, . . . , δp−1}

represented by simple, non-separating based loops which intersect only at the basepoint so that
{α1, β1, . . . , αg, βg} is a standard generating set for the surface of genus g obtained by capping
each boundary component of S with a disk, each δi has geometric intersection one with β1 and
zero with every other generator, as in Figure 5. Notice that any collection of 3 based loops in
Swhich have geometric intersection zero with each other are freely homotopic to a mutually
disjoint, non-parallel collection of simple closed curves which do not bound a pair of pants.

β2

α1

β1

α2

α1

β1

α2

β2

δ1

δ2

Figure 5. Our generators on a surface with genus 2 and 3 boundary components

Throughout the proof we identify S with a subsurface of DS and apply our earlier results to
the representations ρ̂ and σ̂ of π1(DS). Lemma 6.3 implies that if η ∈ π1(S) is represented by a
simple non-separating curve on S, then |Tr(ρ(η))| = |Tr(σ(η))| and λi(ρ(η)) = λi(σ(η)) for all i.

If g > 3, the proof of Theorem 1.2 generalizes rather immediately. We first apply Theorem
7.1 to ρ̂ and σ̂, to see that we may assume, after conjugation in PGLd(R), that ρ and δ agree on
〈α1, α2, α3〉. If η ∈ S − {α1, α2, β1, β2}, we may again apply Theorem 7.1 to show that ρ and σ are
conjugate on 〈α1, α2, η〉. Since ρ̂ and σ̂ agree on α1 and α2, Lemma 7.5 implies that ρ and σ agree
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on 〈α1, α2, η〉. We then consider the triples {α2, α3, β1} and {α1, α3, β2} to show that ρ and σ agree
on β1 and β2, and hence that ρ = σ.

If g = 2 and p > 2, we again use Theorem 7.1 to show that we may conjugate ρ and σ so
that they agree on 〈α1, α2, δ1〉. If i > 2, we may again apply Theorem 7.1 to show that ρ and σ
are conjugate on 〈α1, α2, δi〉 and then Lemma 7.5 to show that ρ and σ agree on 〈α1, α2, δi〉. We
consider the triple {α1, δ1, β2} to show that ρ and σ agree on β2. Therefore, ρ and σ agree on
S− {β1}. Recall that there exists a homeomorphism h : S→ S such that h ◦ αi = βi and h ◦ βi = αi.
The above argument implies that the Hitchin representations ρ ◦ h∗ and σ ◦ h∗ are conjugate on
〈α1, α2, β2〉 and hence that ρ and σ are conjugate on 〈β1, β2, α2〉. Since ρ and σ agree on β2 and α2,
Lemma 7.5 implies that they agree on β1. So, we conclude that ρ = σ.

If g = 1 and p > 3, then S = {α1, β1, δ1, . . . , δp−1}. We first apply Theorem 7.1 to show that we
may conjugate ρ and σ so that they agree on 〈α1, δ1, δ2〉. If i > 3, we may consider the triple
{α1, δ1, δi} to see that ρ and σ agree on δi. It remains to check that ρ and σ agree on β1.

α1
α1

β1

β1

δ1
δ2

δ̂1

δ̂2

Figure 6. Curves on a surface of type (1, p) for p > 3

Let δ̂i be as in Figure 6, so that if S′ = {α1, β1, δ̂1, . . . , δ̂p−1}, then the based loops in S′ intersect
only at the basepoint and each δ̂i has geometric intersection one with α1 and has geometric
intersection number zero with every other element ofS′. Notice that α1δi = δ̂iβ1 and let ui = α1δi.
Then, ρ and σ agree on the subgroup 〈α1,u1, . . . ,up−1〉. We may apply the same argument as
above to show that ρ and σ are conjugate on 〈β1, δ̂1, . . . , δ̂p−1〉. Since this subgroup contains u1
and u2, ρ and σ agree on u1 and u2, and u1 and u2 have non-intersecting axes in π1(DS), Lemma
7.5, applied to ρ̂ and σ̂, implies that ρ and σ agree on 〈β1, δ̂1, . . . , δ̂p−1〉 and hence on β1, so ρ = σ.

If g = 2 and p = 1, then S = {α1, β1, α2, β2}. We will consider the based loops α̂i and β̂i as in
Figure 7. As the based loops {α1, α2, α̂1} are freely homotopic to a mutually disjoint, non-parallel
collection of simple, non-separating curves which do not bound a pair of pants, Theorem 7.1
implies that we may assume that ρ and σ agree on 〈α1, α2, α̂1〉. Similarly, the representations
are conjugate on 〈α1, α2, α̂2〉, and since they already agree on 〈α1, α2, α̂1〉 and α1 and α2 have
non-intersecting axes, Lemma 7.5 implies that they agree on 〈α1, α2, α̂1, α̂2〉. Next, by considering
the triples {α1, β2, α̂1} and {α1, β2, β̂2}, we see that ρ and σ are conjugate on 〈α1, β2, α̂1, β̂2〉. Since
ρ and σ agree on α1 and α̂1, they agree on 〈α1, β2, α̂1, β̂2〉. By similarly considering the triples
{α2, β1, α̂2} and {α2, β1, β̂1}, we show that ρ and σ agree on β1. Since we have shown that, after
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β2

β̂2
α̂2

α̂1

α1

β1

α2

α1

β1

α2

β2

Figure 7. Genus 2 with 1 puncture

an initial conjugation, ρ and σ agree on each generator, we have completed the proof in the case
that (g, p) = (2, 1). �

We similarly obtain the analogue of our Simple Trace Rigidity Theorem in this setting.

Theorem 11.2. Suppose that S is a compact, orientable surface of genus g > 0 with p > 0 boundary
components and (g, p) is not (1, 1) or (1, 2). Then, for all d > 2, there exists a finite collection Ld(S) of
elements of π1(S) which are represented by simple non-separating curves, such that if ρ and σ are two
Hitchin representations of π1(S) of dimension d and |Tr(ρ(η))| = |Tr(σ(η))| for any η ∈ Ld(S), then ρ
and σ are conjugate in PGLd(R).
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Université Côte d’Azur, LJAD, Nice F-06000; FRANCE


	1. Introduction
	Hitchin representations
	Spectrum rigidity
	Isometry groups of the intersection
	Positivity and correlation functions
	Structure of the proof
	Acknowledgements

	2. Hitchin representations and limit maps
	2.1. Definitions
	2.2. Real-split matrices and proximality
	2.3. Transverse flags and associated bases
	2.4. Limit maps
	2.5. Other Lie groups and other length functions

	3. Transverse bases
	3.1. Bruhat cells
	3.2. Positive configurations of flags
	3.3. Positive maps
	3.4. Complementary double Bruhat cells
	3.5. Nesting of double Bruhat cells
	3.6. Rearrangements of flags
	3.7. Transverse bases for quadruples

	4. Correlation functions for Hitchin representations
	4.1. Nontriviality of correlation functions
	4.2. Correlation functions and eigenvalues rigidity

	5. Asymptotic expansion of spectral radii
	6. Simple lengths and traces
	7. Simple length rigidity
	8. Isometries of intersection
	8.1. Intersection and the pressure metric
	8.2. Basic properties
	8.3. Geodesic currents
	8.4. Length functions for Hitchin representations
	8.5. Isometries of intersection and the simple Hilbert length spectrum

	9. Hilbert Length Rigidity
	10. Infinitesmal Simple Length Rigidity
	11. Hitchin representations for surfaces with boundary
	References

