1) a) TRUE If \(f \) is differentiable on \(\mathbb{R} \), then it is continuous on \(\mathbb{R} \), so it is continuous on \([-1, 1]\) and hence uniformly continuous on \([0, 1]\). But if a function is uniformly continuous on \([-1, 1]\) it is uniformly continuous on any subset of \([-1, 1]\) and hence uniformly continuous on \((-1, 1)\).

b) FALSE: Consider the function \(f(x) = x \) which is uniformly continuous on \(\mathbb{R} \), but not bounded on \(\mathbb{R} \).

c) FALSE: Consider the function \(f(x) = x^3 \), then \(f \) is strictly increasing and differentiable on \(\mathbb{R} \), but \(f'(0) = 0 \), so it is not the case that \(f'(x) > 0 \) for all \(x \in \mathbb{R} \).

d) TRUE: \(f(x) = |x| \) is continuous on \([-1, 1]\), hence uniformly continuous on \([-1, 1]\), but is not differentiable at 0.

e) TRUE: If \(f : \mathbb{R} \to \mathbb{R} \) is a function such that \(\lim_{x \to 2^+} f(x) = f(2) \) and \(\lim_{x \to 2^-} f(x) = f(2) \), then \(\lim_{x \to 2} f(x) = f(2) \), so \(f \) is continuous at 2.

2) Claim: The function \(f(x) = x^2 + x \) is continuous at \(x_0 = 1 \).

Proof: Given \(\epsilon > 0 \), let \(\delta = \min\{1, \frac{\epsilon}{4}\} \). If \(|x - 1| < \delta \), then \(|x - 1| < 1 \), so \(0 < x < 2 \) which implies that \(2 < x + 2 < 4 \), so \(|x + 2| < 4 \), and \(|x - 1| < \frac{\epsilon}{4} \). Therefore,

\[
|f(x) - f(1)| = |x^2 + x - 2| = |x + 2||x - 1| < 4 \left(\frac{\epsilon}{4}\right) = \epsilon.
\]

We have shown that for all \(\epsilon > 0 \) there exists \(\delta > 0 \) such that if \(|x - 1| < \delta \), then \(|f(x) - f(1)| < \epsilon \), so \(f \) is continuous at 1.

3) Claim: If \(f : \mathbb{R} \to \mathbb{R} \) is defined so that \(f(x) = 2x \) if \(x \geq 0 \) and \(f(x) = 3x \) if \(x < 0 \), then \(f \) is not differentiable at 0.

Proof: Suppose that \(f \) is differentiable at 0. Then, there exists \(C \in \mathbb{R} \) so that \(\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = C \).

So, if \((x_n) \) is a sequence in \(\mathbb{R} - \{0\} \) which converges to 0, then \(\lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0} = C \).

Consider the sequence \((x_n) = (\frac{1}{n}) \), then \(x_n = 0 \) and \((x_n) \subset \mathbb{R} - \{0\} \). Then, \(\frac{f(x_n) - f(0)}{x_n - 0} = 2 \) for all \(n \), so \(\lim_{n \to \infty} \frac{f(x_n) - f(0)}{x_n - 0} = 2 \), which implies that \(C = 2 \).

Now consider the sequence \((y_n) = (\frac{1}{n}) \), then \(y_n = 0 \) (as we have shown in class) and \((y_n) \subset \mathbb{R} - \{0\} \). However, \(\frac{f(y_n) - f(0)}{y_n - 0} = 3 \) for all \(n \), so \(\lim_{n \to \infty} \frac{f(y_n) - f(0)}{y_n - 0} = 3 \), which implies that \(C = 3 \).

We have obtained a contradiction, so \(f \) must not be differentiable at 0.

4) Claim: There exists a real number \(x \) such that \(x^4 = x^3 + 1 \).

Proof: Consider the function \(g(x) = x^4 - x^3 - 1 \). Since \(g \) is a polynomial it is continuous on \(\mathbb{R} \). Notice that \(g(0) = -1 \) and \(g(-1) = 1 \). Since \(g \) is continuous on \([-1, 0]\) and 0 lies between \(g(-1) \) and \(g(0) \), the Intermediate Value Theorem implies that there exists \(x \in (-1, 0) \) such that \(g(x) = 0 \). Since \(g(x) = 0 \), \(x^4 - x^3 - 1 = 0 \) which implies that \(x^4 = x^3 + 1 \).

5) Claim: If \(f \) is continuous on \([0, 2]\) and differentiable on \((0, 2)\) and \(|f'(x)| \leq 2x \) for all \(x \in (0, 2) \), then

\[
|f(b) - f(a)| \leq 4|b - a|
\]

for all \(a, b \in [0, 2] \) such that \(a < b \).

Proof: Notice that since \(f \) is differentiable on \(\mathbb{R} \), it is continuous on \(\mathbb{R} \). If \(a < b \) and \(a, b \in [0, 2] \), then \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\), so the Mean Value Theorem implies that there exists \(y \in (a, b) \) so that \(f'(y) = \frac{f(b) - f(a)}{b - a} \), so \(|f(b) - f(a)| = |f'(y)| |b - a| \). Since \(y \in (a, b) \subset (0, 2) \), \(|f'(y)| \leq 2y \leq 4 \) which implies that \(|f(b) - f(a)| \leq 4|b - a| \) as desired.