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Abstract. We survey work on the topology of the space AH(M)
of all (marked) hyperbolic 3-manifolds homotopy equivalent to
a fixed compact 3-manifold M with boundary. The interior of
AH(M) is quite well-understood, but the topology of the entire
space can be quite complicated. However, the topology is well-
behaved at many points in the boundary of AH(M).

1. Introduction

In this paper we survey recent work on the topology of the space
AH(M) of all hyperbolic 3-manifolds homotopy equivalent to a fixed
compact 3-manifold with boundaryM . The recent resolution of Thurston’s
Ending Lamination Conjecture (in Brock-Canary-Minsky [53, 13, 14])
in combination with the resolution of Marden’s Tameness Conjecture
(in Agol [1] and Calegari-Gabai [21]), gives a complete classification of
the manifolds in AH(M). However, the invariants in this classification
vary discontinuously over the space, and we are very far from having a
parameterization of AH(M).

The interior int(AH(M)) has been well-understood since the 1970’s,
due to work of Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, Thurston
and others. The components of int(AH(M)) are enumerated by topo-
logical data, and each component is a manifold parameterized by nat-
ural analytic data. The recent resolution of the Bers-Sullivan-Thurston
Density conjecture assures us thatAH(M) is the closure of int(AH(M)).

Since the mid-1990’s, there has been a string of results and examples
demonstrating that the topology of AH(M) is less well-behaved than
originally expected. Anderson and Canary [5] first showed that com-
ponents of int(AH(M)) can bump, i.e. have intersecting closure, while
Anderson, Canary and McCullough [6] characterized exactly which
components of int(AH(M)) can bump when M has incompressible
boundary. McMullen [51] showed that if M = S × I (where S is a
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closed surface), then the only component of int(AH(M)) self-bumps,
i.e. there is a point in the boundary such that any sufficiently small
neighborhood of the point disconnects the interior. Bromberg and Holt
[19] showed that self-bumping occurs whenever M contains a primitive
essential annulus. Most recently, Bromberg [18] showed that the space
of punctured torus groups is not even locally connected. We will survey
these results and describe the construction which has been responsible
for all the pathological behavior discovered so far.

On the other hand, the topology of the deformation space appears
to be well-behaved at most points on its boundary and we will describe
some recent results establishing this in a variety of settings.

Acknowledgements: I would like to thank the organizers of the
workshop, Ravi Kulkarni and Sudeb Mitra, for inviting me to visit the
Harish-Chandra Research Institute. I enjoyed both the mathematical
interaction and the opportunity to visit India for the first time. I would
especially like to thank the student organizers, Vikram Aithal, Krish-
nendu Gongopadhyay, and Siddhartha Sarkar, for their help during my
stay.

2. Definitions

In this section, we will set up some of the notation and introduce
some of the definitions used throughout the remainder of the paper.

Let M be a compact 3-manifold whose interior admits a complete hy-
perbolic structure. We will assume throughout this paper that all sur-
faces and 3-manifolds are oriented and have non-abelian fundamental
group. Then AH(M) is the space of (marked) hyperbolic 3-manifolds
homotopy equivalent to M . More formally, we define

AH(M) = {ρ : π1(M) → PSL2(C)| ρ discrete and faithful}/PSL2(C).

We topologize AH(M) as a subset of the the character variety

X(M) = HomT (π1(M),PSL2(C))//PSL2(C)

where HomT (π1(M),PSL2(C)) denotes the space of discrete faithful
representations ρ : π1(M) → PSL2(C) with the property that if g is a
non-trivial element of a rank two abelian subgroup of π1(M), then ρ(g)
is parabolic. (Here, we are taking the Mumford quotient to guarantee
that the quotient has the structure of an algebraic variety, see Kapovich
[40] for details.)

If ρ ∈ AH(M), then Nρ = H3/ρ(π1(M)) is a hyperbolic 3-manifold
homotopy equivalent to M . (The elements of AH(M) are really equiv-
alence classes of representations, but as the manifolds associated to
conjugate representations are isometric we will consistently blur this
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distinction.) There is also a homotopy equivalence hρ : M → Nρ such
that

(hρ)∗ : π1(M) → π1(Nρ) = ρ(π1(M))

agrees with ρ. The homotopy equivalence hρ is the “marking” of Nρ.
Alternatively, we could have defined AH(M) as the space of pairs

(N, h) where N is an oriented hyperbolic 3-manifold and h : M → N
is a homotopy equivalence, where we consider two pairs (N1, h1) and
(N2, h2) to be equivalent if there is an orientation-preserving isometry
j : N1 → N2 such that j ◦ h1 is homotopic to h2. This alternate
definition is reminiscent of the classical definition of Teichmüller space
as a space of marked Riemann surfaces of a fixed genus.

If ρ ∈ AH(M), then the domain of discontinuity Ω(ρ) is the largest

open subset of Ĉ on which ρ(π1(M)) acts properly discontinuously. The

limit set Λ(ρ) = Ĉ−Ω(ρ) is its complement. The conformal boundary

is defined to be ∂cNρ = Ω(ρ)/ρ(π1(M)) and we let N̂ρ = Nρ ∪ ∂cNρ =
(H3 ∪ Ω(ρ))/ρ(π1(M)).

We say that Nρ is convex cocompact, if N̂ρ is compact. We say that

Nρ is geometrically finite if N̂ρ is homeomorphic to M ′ − P ′ where M ′

is a compact 3-manifold and P ′ is a collection of annuli and tori in
∂M ′. (These definitions are equivalent to more classical definitions,
see Marden [48] and Bowditch [10].)

3. The interior of AH(M)

In this section, we survey the classical deformation theory of hyper-
bolic 3-manifolds which gives a beautiful description of int(AH(M)). If
the boundary of M consists entirely of tori, then Mostow-Prasad Rigid-
ity [57, 67] implies that any homotopy equivalence between hyperbolic
3-manifolds homotopy equivalent to M is homotopic to an isometry.
Therefore, AH(M) has either 0 or 2 points (one gets one point for each
orientation of M .) So, we will always assume that the boundary of M
has a non-toroidal component.

Marden [48] and Sullivan [70] proved that int(AH(M)) consists ex-
actly of geometrically finite hyperbolic manifolds ρ ∈ AH(M) such
that every parabolic element of ρ(π1(M) is contained in a free abelian

subgroup of rank two. (This is equivalent to requiring that N̂ρ be
homeomorphic to a compact 3-manifold with its its toroidal boundary
components removed.) The now classical quasiconformal deformation
theory of Kleinian groups shows that geometrically finite hyperbolic 3-
manifolds are determined by their (marked) homeomorphism type and
the conformal structure on the conformal boundary and that every pos-
sible conformal structure arises. For an analytically-oriented discussion
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of quasiconformal deformation theory, see Bers [8]. For a more topo-
logical viewpoint on this material, see chapter 7 of Canary-McCullough
[23].

In order to formally state the parameterization theorem for int(AH(M))
we need to introduce some more notation.

We define A(M) to be the set of oriented, compact, irreducible,
atoroidal (marked) 3-manifolds homotopy equivalent to M . More for-
mally, A(M) is the set of pairs (M ′, h′) where M ′ is an oriented, com-
pact, irreducible, atoroidal 3-manifold and h′ : M → M ′ is a homo-
topy equivalence where two pairs (M1, h1) and (M2, h2) are considered
equivalent if there exists an orientation-preserving homeomorphism
j : M1 → M2 such that j ◦ h1 is homotopic to h2. We recall that
M ′ is said to be irreducible if every embedded 2-sphere in M ′ bounds
a ball and is said to be atoroidal if every rank two free abelian sub-
group of π1(M

′) is conjugate to a subgroup of π1(T
′) for some toroidal

boundary component T ′ of M ′.
If M ′ ∈ A(M), we define Mod0(M

′) to be the group of isotopy
classes of homeomorphisms of M ′ which are homotopic to the identity.
We define ∂NTM

′ to be the non-toroidal components of ∂M and we
let T (∂NTM

′) denote the Teichmüller space of all (marked) conformal
structures on ∂NTM

′. Recall that the Teichmüller space of a discon-
nected surface is simply the product of the Teichmüller spaces of its
components, so ∂NTM

′ is always topologically a cell.

Theorem 3.1. (Ahlfors, Bers, Kra, Marden, Maskit, Sullivan,Thurston)

int(AH(M)) ∼=
⋃

M ′∈A(M))

T (∂NTM
′)/Mod0(M

′)

This identification is quite natural. By the previously mentioned
results of Marden and Sullivan, if ρ ∈ int(AH(M)), there exists a com-
pact, atoroidal, irreducible 3-manifoldMρ and an orientation-preserving

homeomorphism jρ : N̂ρ → int(Mρ) ∪ ∂NTMρ, so we obtain a well-
defined marked homeomorphism type [Mρ, jρ ◦ hρ] ∈ A(M). Since
jρ is well-defined up to post-composition by elements of Mod0(Mρ)
and ∂cNρ is a Riemann surface, we also get a well defined element
of T (∂NTMρ)/Mod0(Mρ). The injectivity of this identification follows
from the fact that quasiconformal maps which are conformal on the
limit set are globally conformal (which in turn relies on the fact, see
Ahlfors [2], that the limit set Λ(ρ) has measure zero). The surjec-
tivity in this identification follows from the Measurable Riemann Map-
ping Theorem [3] and Thurston’s Geometrization Theorem (see Morgan
[56]).
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If M has incompressible boundary (equivalently if π1(M) is freely in-
decomposable), thenMod0(M

′) is trivial, so each component of int(AH(M))
is topologically a ball. Moreover, Canary and McCullough [23], showed
that if M has incompressible boundary, then A(M) is infinite if and
only if M has double trouble, i.e. there exist simple closed curves α and
β in ∂NTM which are both homotopic to a curve γ in a toroidal bound-
ary component of M but are not homotopic in ∂M . (Alternatively, M
has double trouble if and only if there is a thickened torus component
of its characteristic submanifold, which intersects the boundary of M
in at least two annuli.) We summarize this below.

Corollary 3.2. If M has incompressible boundary, then int(AH(M))
is homeomorphic to a collection of disjoint balls. This collection is
infinite if and only if M has double trouble.

If M has compressible boundary, then typically A(M) is infinite
(see Canary-McCullough [23] for a detailed analysis) and Mod0(M) is
infinitely generated (see McCullough [49].)

Examples: 1) If M is homeomorphic to a trivial I-bundle S × I
over a closed orientable surface S of genus g ≥ 2, then A(M) has
only one element. (Notice that S × I has the quite rare property that
it admits an orientation-reversing self-homeomorphism homotopic to
the identity.) The elements of int(AH(M)) are called quasifuchisan
as they are quasiconformally conjugate to Fuchsian groups. In this
case, int(AH(M)) is often denoted QF (S) and QF (S) ∼= T (S)×T (S).
Concretely, if ρ ∈ int(AH(M)), thenNρ is determined by the conformal
structure on ∂cNρ and given any conformal structure on S × {0, 1}
one can construct a complete hyperbolic structure on S × (0, 1) with
appropriate conformal boundary.

2) Let Si denote a surface of genus g with one (open) disk removed.
We consider the I-bundle Ji = Si × [0, 1] and let ∂rJi = ∂Si × [0, 1].
Let {Ai}n

i=1 be a collection of disjoint, parallel, consecutively ordered
longitudinal annuli in the boundary of a solid torus V . Then Mn is
formed from V and {J1, . . . , Jn} by attaching ∂rJi to Ai. The manifolds
Mn are examples of books of I-bundles, see Culler-Shalen [26].

Any irreducible manifold homotopy equivalent to Mn is formed by
attaching the {Ji} to the {Ai} in a different order. To be more precise,
if τ lies in the permutation group Σn, then one can formM τ

n from V and
{J1, . . . , Jn} by attaching ∂rJi to Aτ(i). One may extend the identity
map on {J1, . . . , Jn} to a homotopy equivalence hτ : M → M τ

n . It is
a consequence, see [5], of Johannson’s Deformation theorem [39], that
every (M ′, h′) ∈ A(Mn) is equivalent to (M τ

n , hτ ) for some τ ∈ Σn.



6 RICHARD D. CANARY

It is easy to check that if n ≥ 3, (M τ
n , hτ ) need not be equivalent

to (Mn, id). For example, if n = 4 and τ = (2 3) one may check
that the boundary components of M4 have genera 3, 5, 5, and 7, while
the boundary components of M τ

4 have genera 4, 5, 5, and 6, so M4

and M τ
4 are clearly not homeomorphic. On the other hand, if τ is

any multiple of the rotation (1 2 · · ·n), (M τ
n , hτ ) is clearly equivalent

to (Mn, id). Analyzing the situation more carefully, again using Jo-
hannson’s Deformation Theorem, one shows that the space A(Mn) of
marked homeomorphism types of manifolds homotopy equivalent toMn

may be identified with cosets of the subgroup generated by (1 2 · · ·n) in
the permutation group Σn (see [5]). In particular, A(Mn) has (n−1)! el-
ements, so int(AH(Mn)) is homeomorphic to a disjoint union of (n−1)!
balls. Notice that M2 = S3 × I where S3 is a closed orientable surface
of genus 3.

4. The Density Theorem

Much of the recent work on infinite volume hyperbolic 3-manifolds
has culminated in the proof of the Bers-Sullivan-Thurston Density Con-
jecture which asserts that AH(M) is the closure of its interior. More
concretely, the Density Conjecture predicts that every hyperbolic 3-
manifold with finitely generated fundamental group is an (algebraic)
limit of geometrically finite hyperbolic 3-manifolds.

Density Theorem: If M is a compact hyperbolizable 3-manifold, then
AH(M) is the closure of its interior int(AH(M)).

There are two approaches to the proof of the Density Theorem. Both
approaches make use of the proof of Marden’s Tameness Conjecture by
Agol [1] and Calegari-Gabai [21] which asserts that every hyperbolic
3-manifold with finitely generated fundamental group is homeomorphic
to the interior of a compact 3-manifold.

In the classical approach one starts with a hyperbolic manifold Nρ ∈
AH(M) and constructs a sequence {Nρi

} in int(AH(M)) such that the
end invariants of {Nρi

} converge to those of Nρ. One then uses con-
vergence results of Thurston [71], Kleineidam-Souto[43], Lecuire [47]
and Kim-Lecuire-Ohshika [42] to show that this sequence converges to
a limit Nρ′ . Arguments of Namazi-Souto [59] or Ohshika [62] can then
be used to check that Nρ′ has the same end invariants as Nρ. One
then invokes the solution of Thurston’s Ending Lamination Conjecture
[53, 13, 14] to show that Nρ = Nρ′ and thus complete the proof that

Nρ ∈ int(AH(M)).
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The other approach makes use of the deformation theory of cone-
manifolds developed by Hodgson-Kerckhoff [30, 31] and Bromberg [15].
These ideas were first used by Bromberg [16] to prove Bers’ original
Density conjecture for hyperbolic manifolds without cusps. This con-
jecture asserted that any Kleinian surface group with exactly one in-
variant component of its domain of discontinuity was in the boundary
of the “appropriate” Bers slice (see section 8 for the definition of a Bers
slice). Brock and Bromberg [11] showed that if M has incompressible

boundary and Nρ ∈ AH(M) has no cusps, then Nρ ∈ int(AH(M)). A
complete proof of the Density Theorem using these methods was given
by Bromberg and Souto [20].

5. Bumping

It would be reasonable to expect that no two components of int(AH(M))
have intersecting closures, since one might expect that any hyperbolic
manifold in the closure of a component B would be homeomorphic
to a hyperbolic manifold in B. In fact, Jim Anderson and I spent
two years attempting to prove this and eventually came up with ex-
amples [5] which illustrated that this “bumping” of components can
occur. Later, Anderson, Canary and McCullough [6] characterized ex-
actly when two components of int(AH(M)) can bump in the case that
M has incompressible boundary.

Formally, we say that two components B and C of int(AH(M)) bump
at ρ if ρ ∈ B∩C. Notice that whenever two components of int(AH(M))
bump, AH(M) is not a manifold.

The first setting in which the phenomenon of bumping was observed,
was the books {Mn} of I-bundles discussed in section 3.

Theorem 5.1. (Anderson-Canary [5]) If n ≥ 3, then any two compo-
nents of int(AH(Mn)) bump, where {Mn} are the books of I-bundles
constructed in example 2 in section 3. In particular, AH(Mn) is con-
nected, while int(AH(Mn)) has (n− 1)! components.

We will outline the construction in the proof of Theorem 5.1 in the
section 7. In a finer analysis, Holt [32] showed that there is a single
point at which any two components of int(AH(Mn)) bump.

Theorem 5.2. (Holt [32]) If n ≥ 3, then there exists ρ ∈ AH(Mn)
which lies in the boundary of every component of int(AH(Mn)).

Remark: Holt [32] further observes, that the set of points lying
in the closure of every component of int(AH(Mn)) contains an open
subset of a (complex) codimension 2 subvariety of X(Mn). It is typical
that the “bumping locus” is relatively large.
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Anderson, Canary and McCullough [6] later gave a complete charac-
terization of which components of int(AH(M)) can bump in the case
when M has incompressible boundary. Roughly, the two components
can bump if the two (marked) homeomorphism types differ by cutting
along a collection of (primitive) solid tori and rearranging the order in
which the complementary pieces are attached. One sees that for Mn

any two homeomorphism types differ in this specific way. A solid torus
V in M is said to be primitive if V ∩ ∂M is a non-empty collection of
annuli, the inclusion of each annulus of V ∩ ∂M into V is a homotopy
equivalence and the image of π1(V ) in π1(M) is a maximal abelian
subgroup.

To illustrate the role of primitivity in Anderson, Canary and Mc-
Cullough’s result, we consider a sequence of manifolds {M ′

n}∞n=3, again
obtained from a solid torus V and I-bundles {J1, . . . , Jn}. This time
we let {A′1, . . . , A′n} be a collection of disjoint, parallel, consecutively
ordered annuli in the boundary of a solid torus V such that the inclu-
sion of π1(A

′
i) into π1(V ) is a subgroup of index 3 (i.e. each annulus

wrap 3 times around the longitude of V .) We form M ′
n by attaching

∂rJi to A′i. It is again the case that any manifold homeomorphic to
M ′

n is obtained by attaching the Ji in a different order and that A(M ′
n)

has (n − 1)! elements. However, the results of [6] imply that no two
components of int(AH(M ′

n)) bump for any n.
In order to give a precise statement of the results of [6] we must

introduce the notion of a primitive shuffle equivalence. In what fol-
lows, if M is a compact, irreducible 3-manifold with incompressible
boundary, then Σ(M) will denote its characteristic submanifold. For
complete discussions of the theory of characteristic submanifolds see
Jaco-Shalen [38] or Johannson [39]. For a discussion in the setting
of hyperbolizable 3-manifolds, see Canary-McCullough [23] or Morgan
[56].

Given two compact irreducible 3-manifoldsM1 andM2 with nonempty
incompressible boundary, a homotopy equivalence h : M1 → M2 is a
primitive shuffle equivalence if there exists a finite collection V1 of prim-
itive solid torus components of Σ(M1) and a finite collection V2 of solid
torus components of Σ(M2), so that h−1(V2) = V1 and so that h re-
stricts to an orientation-preserving homeomorphism from the closure
of M1 − V1 to the closure of M2 − V2.

If M is a compact, hyperbolizable 3-manifold with nonempty incom-
pressible boundary, we say that two elements [(M1, h1)] and [(M2, h2)]
of A(M) are primitive shuffle equivalent if there exists a primitive shuf-
fle equivalence s : M1 →M2 such that [(M2, h2)] = [(M2, s ◦ h1)].
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Theorem 5.3. (Anderson-Canary-McCullough [6]) Let M be a com-
pact, hyperbolizable 3-manifold with nonempty incompressible bound-
ary, and let [(M1, h1)] and [(M2, h2)] be two elements of A(M). The
associated components of int(AH(M)) have intersecting closures if and
only if [(M2, h2)] is primitive shuffle equivalent to [(M1, h1)].

Combining the work of Anderson, Canary and McCullough [6] with
the resolution of the Density Conjecture, one obtains a complete enu-
meration of the components of AH(M) when M has incompressible
boundary. In particular, one completely determines exactly whenAH(M)
has infinitely many components. Primitive shuffle equivalence gives a

finite-to-one equivalence relation on A(M) and we let Â(M) be the
quotient of A(M) by this equivalence relation.

Corollary 5.4. If M has incompressible boundary, then the compo-

nents of AH(M) are in one-to-one correspondence with Â(M). In
particular, AH(M) has infinitely many components if and only if M
has double trouble.

Holt [33] refined the analysis of [6] to show that if Ci is a collection
of components of int(AH(M)) such that any two components in the
collection bump, then then they all bump at a single point.

Theorem 5.5. (Holt [33]) Let M be a compact, hyperbolizable 3-manifold
with nonempty incompressible boundary, and let {[(Mi, hi)]i}m

i=1 be a
collection of elements of A(M) such that [(Mi, hi)] is primitive shuffle
equivalent to [(M1, h1)] for all i. If Ci is the component of int(AH(M))
associated to [(Mi, hi)], then

m⋂
i=1

Ci 6= ∅.

6. Self bumping

McMullen [51] was the first to observe that individual components of
int(AH(M)) can self-bump. A componentB of int(AH(M)) self-bumps
at ρ ∈ B if there is a neighborhood V of ρ such that if ρ ∈ W ⊂ V is
any sub-neighborhood, then W ∩B is disconnected.

Theorem 6.1. (McMullen [51]) If S is a closed surface, then QF (S) =
int(AH(S × I)) self-bumps.

Notice that this implies, in particular, that AH(S × I) is not a
manifold. The self-bumping points in [51] are again obtained using the
construction from [5] described in section 7.
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McMullen’s proof made use, in a crucial manner, of the theory of
projective structures on surfaces, so did not generalize immediately to
manifolds which are not I-bundles. Bromberg and Holt [19] were able
to generalize McMullen’s result to all manifolds which contain primitive
essential annuli. An embedded annulus A in M is said to be essential if
it is incompressible, i.e. π1(A) injects into π1(M), and is not properly
homotopic into the boundary ∂M . It is said to be primitive if the image
of π1(A) in π1(M) is a maximal abelian subgroup of π1(M).

Theorem 6.2. (Bromberg-Holt [19]) If M contains a primitive essen-
tial annulus, then every component of int(AH(M)) self-bumps.

Notice that there is no assumption thatM has incompressible bound-
ary in this theorem. It implies, in particular, that AH(M) is not a
manifold if M contains a primitive essential annulus.

Ito has completed an extensive analysis of related phenomena in the
space P (S) of complex projective structures on a surface S. There is a
natural map hol : P (S) → X(S × I) which takes a complex projective
structure to its associated holonomy map. Hejhal [29] showed that
the map hol is a local homeomorphism and Goldman [28] showed that
the components of Q(S) = hol−1(QF (S)) are enumerated by the set
of weighted multicurves on S. McMullen [51] showed that QF (S) self-
bumps by showing that two components of Q(S) can bump. Ito [35, 36]
shows that any two components of Q(S) bump, that any component of
Q(S) other than the base component self-bumps, and that arbitrarily
many components of Q(S) can bump at a single point. (Bromberg and
Holt have obtained related results.)

7. The key construction

In this section, we will describe the “wrapping” construction of [5]
in the special case of AH(M4). Let τ ∈ Σ4 be the permutation (2 3).

Let M̂ τ
4 be the manifold obtained from M τ

4 by removing an open
neighborhood of the core curve of V . One may construct an infinite
cyclic cover (M̂ τ

4 )′ of M̂ τ
4 from an infinite thickened annulus S1× I×R

by attaching infinitely many copies of each Ji to the outer bound-
ary S1 × {0} × R so that they occur repeatedly in the cyclic or-
der . . . J1, J3, J2, J4, J1, J3, . . . .... (More concretely, for all n ∈ Z and
i = 1, 2, 3, 4 one attaches a copy of Ji to the thickened annulus by iden-
tifying ∂rJi with S1 × {0} × [10n + 2τ(i) − 1, 10n + 2τ(i) + 1] by an
orientation-reversing homeomorphism. Vertical translation by 10 on
the infinite thickened annulus extends to a homeomorphism of (M τ

4 )′
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which generates the full group of covering transformations of (M̂ τ
4 )′

over M τ
4 .) Let π : (M̂ τ

4 )′ → M̂ τ
4 be the covering map.

One then constructs an orientation-preserving embedding f̃τ : M4 →
(M̂ τ

4 )′ which takes each Ji homeomorphically to a copy of Ji. (More
concretely, one may take Ji to the copy of Ji attached to S1×I× [10i+

2τ(i)− 1, 10i+ 2τ(i) + 1].) Let fτ = π ◦ f̃τ .

Let M̃4
τ be the cover of M̂ τ

4 associated to (fτ )∗(π1(M4)). One eas-

ily checks that fτ lifts to an embedding f̃τ : M4 → M̃ τ
4 (since it lifts

to an embedding in the intermediate cover (M̂ τ
4 )′.) Also, notice that

if i0 : M̂ τ
4 → M τ

4 denotes the inclusion map, then i0 ◦ fτ is a homo-
topy equivalence and is homotopic to hτ (where hτ is the homotopy
equivalence defined in example 2 in section 3).

The central tool in the construction is the generalization of Thurston’s
Hyperbolic Dehn Filling Theorem [71] to the setting of geometrically
finite hyperbolic 3-manifolds.

Let T be a toroidal boundary component of compact 3-manifold M
and let (m, l) be a choice of meridian and longitude for T . Given a
pair (p, q) of relatively prime integers, we may form a new manifold
M(p, q) by attaching a solid torus V to M by an orientation-reversing
homeomorphism g : ∂V → Ti so that, if c is the meridian of V , then
g(c) is a (p, q) curve on T with respect to the chosen meridian-longitude
system. We say that M(p, q) is obtained from M by (p, q)-Dehn filling
along T .

If T = ∂M and M is hyperbolizable (i.e. its interior admits a com-
plete hyperbolic structure), then Thurston [71] proved that M(p, q)
is hyperbolizable for all but finitely many choices of (p, q). Bonahon
and Otal [9] were the first to observe that you could generalize this
result to the setting of geometrically finite hyperbolic 3-manifolds (see
also Comar [25], Hodgson-Kerckhoff [30] and Bromberg [17].) Our
statement of the resulting Hyperbolic Dehn Filling Theorem is rather
convoluted but it essentially says that given a geometrically finite hy-
perbolic 3-manifold N homeomorphic to int(M) and (p, q) near to ∞,
then there exists a geometrically finite hyperbolic 3-manifold N(p, q)
which is “near” to N in some algebraic sense. The complications in
the statement are largely the result of the need to keep track carefully
of the homotopy type.

Hyperbolic Dehn Filling Theorem: Let M be a compact, hyper-
bolizable 3-manifold and let T be toroidal boundary component of M .
Let N = H3/Γ be a geometrically finite hyperbolic 3-manifold admitting
an orientation-preserving homeomorphism ψ : int(M) → N . Further
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assume that every parabolic element of Γ lies in a rank-two parabolic
subgroup. Let {(pn, qn)} be an infinite sequence of distinct relatively
prime pairs of integers.

Then, for all sufficiently large n, there exists a (non-faithful) repre-
sentation βn : Γ → PSL2(C) with discrete image such that

(1) βn(Γ) is geometrically finite and every parabolic element of βn(Γ)
lies in a rank-two parabolic subgroup,

(2) {βn} converges to the identity representation of Γ, and
(3) if in : M → M(pn, qn) denotes the inclusion map, then for

each n, there exists an orientation-preserving homeomorphism
ψn : int(M(pn, qn)) → H3/βn(Γ) such that βn ◦ ψ∗ is conjugate
to (ψn)∗ ◦ (in)∗.

In order to apply the Hyperbolic Dehn Filling Theorem in our setting
we need to make a couple more topological observations. We choose
a meridian-longitude system for the toroidal boundary component T
of M̂ τ

4 so that the meridian bounds a disk in M τ
4 and the longitude

bounds an essential annulus A in M̂ τ
4 . First, one checks that M̂ τ

4 (1, n)
is homeomorphic to M τ

4 for all n. (The easiest way to see this is to
note that Dehn twisting n times about A takes the (1, 0) curve on T to

the (1, n) curve and observe that M̂ τ
4 (1, 0) = M τ

4 .) Then one similarly

notices that (M̂ τ
4 (1, n), in ◦ fτ ) is equivalent to (M τ

4 , hτ ) in A(M4) for
all n (where hτ is the homotopy equivalence defined in example 2 in
section 3).

Now let N = H3/Γ be a hyperbolic geometrically finite hyperbolic
3-manifold admitting an orientation-preserving homeomorphism ψ :
int(M̂ τ

4 ) → N . (We further require that all parabolic elements of Γ
lie in rank two parabolic subgroups.) In the Hyperbolic Dehn Filling
Theorem we choose (pn, qn) = (1, n) for all n and let βn : Γ → PSL2(C)
be the resulting sequence of representations.

For each n, define ρn = βn ◦ ψ∗ ◦ (fτ )∗. The sequence ρn converges
to ρ = ψ ◦ (fτ )∗. Since βn ◦ ψ∗ is conjugate to (ψn)∗ ◦ (in)∗, we see
that ρn is conjugate to (ψn)∗ ◦ (in)∗ ◦ (fτ )∗. Since in ◦ fτ is a homotopy
equivalence and ψn is a homeomorphism, ρn is a discrete faithful repre-
sentation with image π1(Nn) = βn(Γ̂). Since (M̂ τ

4 (1, n), in◦fτ ) is equiv-

alent to (M τ
4 , hτ ), it follows that (N̂ρn , hρn) is equivalent to (M τ

4 , hτ )
for all n. In particular, ρn lies in the component of int(AH(M4)) as-
sociated to (M τ

4 , hτ ) for all n. On the other hand, since fτ lifts to an
embedding, the Tameness Theorem and results of McCullough-Miller-
Swarup [50] imply that Nρ is homeomorphic to int(M4). Moreover, if
Cρ is a compact core for Nρ, then (Cρ, hρ) is equivalent to (M4, id) in
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A(Mn). So, {ρn} is an example of a sequence in AH(Mn) where the
homeomorphism type changes in the limit.

It remains to show that ρ lies in the closure of the component of
int(AH(M4)) associated to (M4, id). We may accomplish this by mod-
ifying the above construction. We first construct a geometrically fi-
nite hyperbolic 3-manifold N ′ which admits an orientation-preserving
homeomorphism ψ′ : int(M̂4) → N ′ (where M̂4 is the manifold ob-
tained from M4 by removing an open neighborhood of the core curve
of V ). We further require that there exists an embedding f : M4 → M̂4

such that i′n ◦ f : M4 → int(M̂4(1, n)) is a homotopy equivalence which
is homotopic to an orientation-preserving homeomorphism for all n.
Finally, we require that ρ is conjugate to ψ′∗ ◦ f∗. (We may normalize
so that there is a maximal abelian subgroup of ρ(π1(M4)) generated by
the Mobius transformation z → z + 1. If one considers the group Γ′

generated by ρ(π1(M4)) and z → z + ri for a large enough real value
of r, then one may take N ′ = H3/Γ′.) One then applies the Hyper-
bolic Dehn Filling Theorem just as before to obtain a sequence {ρ′n}
of representations lying in the component of int(AH(M4)) associated
to (M4, id) and converging to ρ. Alternatively, one may simply apply
a theorem of Ohshika [60].

It should be fairly clear that the above construction works for all n
and all τ ∈ Σn. In fact, it works for all primitive shuffle equivalences,
see [6].

This construction is also responsible for the phenomenon of self-
bumping. Recall that M2 = S3 × I where S3 is a closed surface of
genus 3. We illustrate the modifications of the “wrapping construction”
necessary to produce a self-bumping point in the boundary of QF (S3).

Let M̂3 be obtained from M3 by removing an open neighborhood of the
core curve of V and let (M̂3)

′ be the infinite cyclic cover obtained by
gluing alternating copies of J1 and J2 to an infinite thickened annulus.
We construct an orientation-preserving embedding f̃ : M3 → (M̂3)
which maps J1 to the “first copy” of J1 and maps J2 to the “second”
copy of J2 (so that there are copies of J2 and J1 which lie “between”

the image of J1 and the image of J2). We then let f = π ◦ f̃ and apply
Thurston’s Hyperbolic Dehn Filling Theorem as before, to produce
a sequence {ρn} in QF (S3) which converges to a self-bumping point
ρ ∈ ∂AH(M2). (The assertion that ρ is a self-bumping point is not
obvious and requires a clever proof, see McMullen [51] or Bromberg-
Holt [19]).
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8. Relative deformation spaces and the failure of local
connectivity

There are various naturally defined subsets of AH(M) which have
played a prominent role in the theory of Kleinian groups. Most simply,
one may require that certain elements of π1(M) be mapped to parabolic
elements In this setting, it is natural to introduce the language of pared
manifolds. We refer the reader to Morgan [56] and Canary-McCullough
[23] for a more extensive discussion of pared manifolds.

LetM be a compact, orientable, irreducible 3-manifold with nonempty
boundary which is not a 3-ball, and let P ⊆ ∂M . We say that (M,P )
is a pared 3-manifold if

(1) Every component of P is an incompressible torus or annulus,
(2) every noncyclic abelian subgroup of π1(M) is conjugate into the

fundamental group of a component of P , and
(3) every map ϕ : (S1 × I, S1 × ∂I) → (M,P ) which induces an

injection on fundamental groups is homotopic, as a map of pairs,
to a map ψ such that ψ(S1 × I) ⊂ P .

We can then define the relative deformation space AH(M,P ) to be
the set of (conjugacy classes) of representations ρ ∈ AH(M) such that
if Q is any component of P then ρ(π1(Q)) consists of parabolic ele-
ments. AH(M,P ) lies in a relative character variety X(M,P ). We
may define the set A(M,P ) to be the set of marked, oriented pared
manifolds homotopy equivalent to (M,P ) up to orientation preserv-
ing pared homeomorphisms. Again the interior of AH(M,P ) (within
X(M,P )) can be identified with⋃

(M ′,P ′)∈A(M,P )

T (∂M ′ − P ′)/Mod0(M
′, P ′)

whereMod0(M
′, P ′) is the group of isotopy classes of pared self-homeomorphism

of (M ′, P ′) which are pared homotopic to the identity (see Canary-
McCullough [23] for more details.)

If S is a compact surface with boundary, then the interior QF (S) of
AH(S×I, ∂S×I) is again the space of quasifuchsian groups which are
quasiconformally conjugate to a cofinite area Fuchsian group uniformiz-
ing the interior S0 of S and is naturally identified with T (S0)×T (S0).
In the case that S0 is a once-punctured torus, AH(S × I, ∂S × I) is
known as the space of punctured torus groups. Bromberg [18] proved
that the space of punctured torus groups is not locally connected.

Theorem 8.1. (Bromberg [18]) The space of punctured torus groups
is not locally connected.
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Results of Holt-Souto [34] and Evans-Holt [27] combine to show that
the set of self-bumping points, and hence the set of points where the
deformation space is not locally connected, is not dense in the boundary
of the space of punctured torus groups. In particular, they show that
there exists some constant ε0 > 0 such that if ρ is a punctured torus
group and every closed geodesic in ∂cNρ which is homotopic into a cusp

in N̂ρ has length at least ε0, then the space of punctured torus groups
does not self-bump at ρ.

Ito [37] has quite recently given a complete description of the self-
bumping points in the boundary of the space of punctured torus groups.
In particular, he shows that all self-bumping points arise from the con-
struction described in section 7. Ohshika [63] has generalized many
of Ito’s result to the setting of all quasifuchsian spaces. Moreover, he
is able to show that there is no self-bumping at many points in the
boundary of quasifuchsian space.

Another natural and well-studied class of deformation spaces are
the Bers slices which sit inside the quasifuchsian spaces. We recall
that if S is a compact surface, then its associated space QF (S) of
quasifuchsian groups is naturally identified with T (S0) × T (S0). If
σ ∈ T (S0), then the associated Bers slice Bσ is the set T (S0)×{σ} of
quasifuchsian groups, whose bottom conformal boundary component
has conformal structure σ. Bers [7] proved that the closure of any Bers
slice is compact, so it is natural to study the topology of the closure of
such a component. Minsky [52] proved that if S0 is a once-punctured
torus, then the closure of any Bers slice is homeomorphic to a disk, but
nothing is known in the situation when the Bers slice has dimension
greater than 2.

Theorem 8.2. (Minsky [52]) If S0 is a once-punctured torus, then
the closure in the space of punctured torus groups of any Bers slice in
QF (S) is homeomorphic to a closed disk.

Remark: Minsky [52] also showed that the closure of the Maskit slice
is homeomorphic to a closed disk. Komori [44] has establishes the
same result for the Earle slice and Komori and Parkkonen [45] show
that Bers-Maskit slices have the disk as closure.

9. Untouchable points

In this section, we will describe joint work with Jeff Brock, Ken
Bromberg and Yair Minsky [12] which shows that the topology of
AH(M) is well-behaved at “most” points in the boundary of AH(M)
in various cases.
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A point ρ ∈ ∂AH(M) is said to be untouchable if there is no bumping
or self-bumping at ρ. Notice that AH(M) is locally connected at all
untouchable points.

Theorem 9.1. ([12]) If ρ ∈ ∂AH(M) and ρ(π1(M)) contains no par-
abolic elements, then ρ is untouchable.

If ∂M contains no tori, then such points are generic in ∂AH(M).
Notice that we do not assume in this result that ∂M has incompressible
boundary

The proof of the non-bumping portion of this result is a straightfor-
ward application of earlier work and we will provide a brief outline of
the argument. One first notes that results of Thurston [71], Canary
[22] and Anderson-Canary [4] imply that if {ρi} ⊂ int(AH(M)) con-
verges to ρ, then {Nρi

} converges geometrically to Nρ (i.e. larger and
larger portions of Nρ look increasingly like portions of Nρi

.) Results of
Thurston [71], Canary-Minsky [24] and Ohshika [61], then imply that
Nρ is homeomorphic to Nρi

(by a homeomorphism in the homotopy
class determined by ρ ◦ ρ−1

i ) for all large i. Hence the (marked) home-
omorphism type is locally constant at ρ, so there is no bumping at
ρ.

The proof that there is no self-bumping at ρ is somewhat more in-
volved. One begins by showing that if {ρi} converges to ρ, then the
end invariants of {Nρi

} converge to those of Nρ. (This is not always
the case, so we are also using our restrictions on ρ here.) We then
consider any two sequences {ρi} and {ρ′i} in int(AH(M)) converging
to ρ and construct paths αi : I → int(AH(M)) joining ρi to ρ′i, so that
the sequence {αi} converges to the constant path with image ρ. To
establish the convergence of these paths, we use the same convergence
results and arguments as used in the proof of the Density Theorem as
well as the resolution of the Ending Lamination Conjecture.

If we allow Nρ to have cusps, then {Nρi
} need not converge geomet-

rically to Nρ in the above argument, so to rule out bumping we must
place additional restrictions on ρ. We say that ρ is quasiconformally
rigid, if every component of ∂cNρ is a thrice-punctured sphere. Notice
that this includes the case that ∂cNρ is empty. (We call such repre-
sentations quasiconformally rigid, since Sullivan’s rigidity theorem [69]
guarantees that any representation quasiconformally conjugate to ρ is
in fact conformally conjugate.)

Theorem 9.2. ([12]) If ρ ∈ ∂AH(M) is quasiconformally rigid, then
there is no bumping at ρ.
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Remark: There is a related result of Anderson, Canary and McCul-
lough (Corollary 8.2 in [6]) in the setting where M has incompressible
boundary which is much stronger.

We provide a brief outline of the argument, which is again largely
an exercise in applying previously developed technology. Suppose that
{ρi} ⊂ int(AH(M)) converges to ρ and {Nρi

} converges geometrically
to N∞. Then there exists a covering map π : Nρ → N∞. Results of
Anderson-Canary [4] and Canary [22] imply that there exists a com-
pact core C for Nρ which embeds in N∞ (via π). For large i, one can
pull-back π(C) to obtain a compact core Ci for Nρi

such that Ci is
homeomorphic to C (by a homeomorphism in the homotopy class de-
termined by ρi ◦ ρ−1). The main result of McCullough-Miller-Swarup
[50] imply that Ci is homeomorphic to Nρi

(by a homeomorphism ho-
motopic to inclusion). Therefore, Nρi

is homeomorphic to Nρ for all
large enough i (again by a homeomorphism in the correct homotopy
class). So, there is no bumping at ρ.

To rule out self-bumping, we need to further restrict our setting.

Theorem 9.3. ([12]) If M is acylindrical or homeomorphic to S × I
(where S is a closed surface) and ρ ∈ ∂AH(M) is quasiconformally
rigid, then there is no self-bumping at ρ. So, ρ is untouchable.

The proof of this theorem is much more involved and makes use in a
key way of the techniques of proof of the Ending Lamination Conjec-
ture, in particular Minsky’s a priori bounds [53], as well as Thurston’s
bounded image theorem (see Kent [41]).

Remark: In the case that M ∼= S×I, our results overlap substantially
with results of Ohshika [63]. We refer the reader to Ohshika’s paper
for the detailed definitions.

Theorem 9.4. (Ohshika [63]) Suppose that S is a compact hyperbolic
surface and ρ ∈ ∂AH(S × I, ∂S × I).

(1) If ∂cNρ has one component homeomorphic to S0 and all other
components are thrice-punctured spheres and every rank one
cusp of Nρ (which is not homotopic to a component of ∂S)
abuts a geometrically infinite end, then there is no self-bumping
at ρ.

(2) If ρ is quasiconformally rigid and every rank one cusp of Nρ

(which is not homotopic to a component of ∂S) abuts a geomet-
rically infinite end, then there is no self-bumping at ρ.

His techniques are quite different and make deep use of Soma’s
work [68] on geometric limits of quasifuchsian hyperbolic 3-manifolds.
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Ohshika and Soma [64] have recently extended Soma’s work on geo-
metric limits.

10. Questions and conjectures

In this final section, we will collect conjectures and questions about
the topology of deformation spaces of hyperbolic 3-manifolds. As we
still understand very little, much remains to study and we limit our-
selves to a few of the more obvious questions.

10.1. Local connectivity. Bromberg has conjectured that the failure
of local connectivity is a fairly widespread phenomenon. As a first step,
one might hope to show that it holds for all spaces of surface groups.

Conjecture 10.1. (Bromberg [18]) If S is any compact surface, then
AH(S × I, ∂S × I) is not locally connected.

Bromberg’s proof of Theorem 8.1 makes essential use of the wrapping
construction described in section 7. However, he expects that local
connectivity should fail even in settings where one cannot perform this
construction, e.g. for Bers slices.

Conjecture 10.2. (Bromberg [18]) If S is any compact hyperbolic sur-
face whose interior S0 is not a once-punctured torus, thrice-punctured
sphere or 4-times punctured sphere, then the closure of any Bers slice
in QF (S) is not locally connected.

As Bromberg points out, these two specific conjectures strongly sug-
gest the following more dramatic conjecture

Conjecture 10.3. If M is any compact hyperbolizable 3-manifold with
a non-toroidal boundary component, then AH(M) is not locally con-
nected.

It should be pointed out that if M does not contain a primitive
essential annulus, then we don’t even know that M is not a manifold,
so one might begin with the following easier conjecture.

Conjecture 10.4. If M is any compact hyperbolizable 3-manifold with
a non-toroidal boundary component, then AH(M) is not a manifold.

10.2. The compressible case. In the case where M has incompress-
ible boundary, Corollary 5.4 gives a complete enumeration of the com-
ponents of AH(M), but the situation where M is allowed to have com-
pressible boundary is still quite mysterious. It is easy to use the con-
stuction in section 7 to show that various components of int(AH(M))
bump. Bromberg and Holt’s result, Theorem 6.2, already applies to
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show that every component of int(AH(M)) self-bumps, since M will
always contain a primitive essential annulus if M has compressible
boundary.

One would like to give a complete enumeration of the components
of AH(M) whenever M has compressible boundary. In the incom-
pressible boundary situation, this is accomplished by showing that the
construction in section 7 is responsible for all bumping phenomena.

Problem 10.5. Give a complete enumeration of the components of
AH(M) in terms of topological data.

One might hope to begin by establishing the following simpler con-
jecture, which follows from Theorem 5.3 in the case where M has in-
compressible boundary.

Conjecture 10.6. AH(M) has finitely many components if and only
if its interior has finitely many components.

A first step in the proof of this conjecture might be to show that
it is not possible for infinitely many components of int(AH(M)) to
accumulate at a single point.

10.3. The fractal nature of deformation spaces. Closures of Bers
slices in punctured torus spaces admit natural embeddings in C. The
beautiful pictures of these embeddings, see Komori-Sugawa-Wada-Yamashita
[46], Yamashita [72], and Mumford-Series-Wright [58], suggest that
their boundaries are quite “fractal” in nature. One might guess that the
boundaries of these slices have Hausdorff dimension strictly between 1
and 2.

Question 10.7. What can one say about the Hausdorff dimension of
the boundary of a Bers slice of a punctured torus?

Miyachi [54, 55] has shown that there is a countable dense set of
“cusps” in the boundary of a Bers slice of a punctured torus. Parkko-
nen [65] has further analyzed the shapes of these cusps in the related
setting of a Maskit slice. Parkkonen [66] has also studied the shape
of Schottky space near certain boundary point. (Schottky space is
intAH(Hg) where Hg is the handlebody of genus g.)

Of course, one would like to study more general classes of deforma-
tion spaces in the future.

10.4. Components of AH(M) and components of the character
variety. It is known that AH(M) can be disconnected, but it is not
known whether or not the different components of AH(M) can lie in
different components of the character variety.
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Question 10.8. Is it possible that different components of AH(M) lie
in different components of the character variety?
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