Metric spaces: definitions and examples

If X is a set, then a function $d : X \times X \to [0, \infty)$ is a metric if
(M1) $d(x, y) = 0$ if and only if $x = y$,
(M2) $d(x, y) = d(y, x)$ for all $x, y \in X$, and
(M3) $d(x, y) + d(y, z) \geq d(x, z)$ for all $x, y, z \in X$.

\mathbb{R}^n admits the metrics
$$d_2(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
and
$$d_\infty(\vec{x}, \vec{y}) = \max\{|x_i - y_i| \mid i = 1, \ldots, n\}.$$

d_2 is called the Euclidean metric.

If X is a set, then the discrete metric $d : X \times X \to [0, \infty)$ is given by $d(x, y) = 0$ if $x = y$ and $d(x, y) = 1$ if $x \neq y$.

The space $C([a, b], \mathbb{R})$ of all continuous functions $f : [a, b] \to \mathbb{R}$ admits the metrics d_1 and d_∞ where
$$d_1(f, g) = \int_{a}^{b} |f(x) - g(x)| \, dx$$
and
$$d_\infty(f, g) = \max\{|f(x) - g(x)| \mid x \in [a, b]\}.$$

Open sets and continuity

If (X, d) is a metric space, $x \in X$ and $\epsilon > 0$, then
$$B(x, \epsilon) = \{y \in X \mid d(x, y) < \epsilon\}.$$

A subset U of X is open if for all $x \in U$, there exists $\epsilon_x > 0$ such that $B(x, \epsilon_x) \subset U$.

Lemma: If $\epsilon > 0$ and $x \in X$, then $B(x, \epsilon)$ is an open subset of X.

Proposition: If (X, d) is a metric space, then
(i) The emptyset \emptyset and X are open.
(ii) If $\{U_\alpha\}_{\alpha \in \Lambda}$ is a collection of open sets, then $\bigcup_{\alpha \in \Lambda} U_\alpha$ is an open set.
(iii) If $\{U_1, \ldots, U_n\}$ is a finite collection of open sets, then $\bigcap_{i=1}^{n} U_i$ is open.

Proposition: If (X, d) is a metric space and x and y are distinct points in X, then there exist disjoint open sets U and V such that $x \in U$ and $y \in V$, i.e. metric spaces are Hausdorff.

A function between metric spaces $f : (X_1, d_1) \to (X_2, d_2)$ is continuous at $x \in X_1$ if for all $\epsilon > 0$ there exists $\delta > 0$ such that if $y \in X$ and $d_1(x, y) < \delta$, then $d_2(f(x), f(y)) < \epsilon$. f is continuous if it is continuous at every point in X_1.

Theorem: A function $f : (X_1, d_1) \to (X_2, d_2)$ is continuous if and only if whenever U is an open subset of X_2, then $f^{-1}(U)$ is open in X_1.

Closed sets and continuity

A subset C of a metric space (X, d) is said to be closed in X if its complement $X \setminus C$ is an open set in X.

Proposition: If (X, d) is a metric space, then

(i) The emptyset \emptyset and X are closed.

(ii) If $\{C_\alpha\}_{\alpha \in \Lambda}$ is a collection of closed sets, then $\bigcap_{\alpha \in \Lambda} C_\alpha$ is a closed set.

(iii) If $\{C_1, \ldots, C_n\}$ is a finite collection of closed sets, then $\bigcup_{i=1}^n C_i$ is closed.

Lemma: If (X, d) is a metric space, $x \in X$ and $\epsilon \geq 0$, then the closed disk

$$D(x, \epsilon) = \{y \in X \mid d(y, x) \leq \epsilon\}$$

of radius ϵ about x is a closed subset of X.

Theorem: A function $f : (X_1, d_1) \to (X_2, d_2)$ is continuous if and only if whenever C is a closed subset of X_2, then $f^{-1}(C)$ is closed in X_1.

Sequences in metric spaces:

A sequence $\{x_n\}$ in a metric space (X, d) is said to be convergent with limit $x \in X$ if for all $\epsilon > 0$, there exists N such that if $n \geq N$, then $d(x_n, x) < \epsilon$. We write $\lim x_n = x$.

Theorem: Suppose that $f : X \to Y$ is a function between metric spaces. Then f is continuous at x if and only if whenever $\{x_n\}$ is a sequence in X such that $\lim x_n = x$, then $\lim f(x_n) = f(\lim x_n)$.

Lemma: A convergent sequence $\{x_n\}$ in a metric space X is bounded (i.e. there exists $x_0 \in X$ and $R > 0$ so that $x_n \in D(x_0, R)$ for all n).

A sequence $\{x_n\}$ in a metric space X is said to be a Cauchy sequence if for all $\epsilon > 0$ there exists N such that if $n, m \geq N$, then $d(x_n, x_m) < \epsilon$.

Lemma: Any convergent sequence in a metric space is a Cauchy sequence.

Closure and interior:

If $x \in X$, then an open set U in X is an open neighborhood of x if it contains x. If A is a subset of a metric space X, then $x \in \bar{A}$ if and only if whenever U is an open neighborhood of x, $U \cap A$ is non-empty. Moreover, $a \in A^0$ if and only if there exists an open neighborhood U of a which is contained in A. \bar{A} is called the closure of A and A^0 is called the interior of A.

Lemma: If A is a subset of a metric space X, then

1. $A^0 \subseteq A \subseteq \bar{A}$.
2. A^0 is open and \bar{A} is closed in X.
3. If C is a closed subset of X and $A \subseteq C$, then $\bar{A} \subseteq C$.
4. $x \in A$ if and only if there exists a convergent sequence $\{x_n\} \subseteq A$ such that $x = \lim x_n$.
5. A is closed if and only if $A = \bar{A}$.
6. A is open if and only if $A = A^0$.

Useful Lemma: A subset V of a metric space (X, d) is open in X if and only if for all $x \in V$, there exists an open neighborhood U_x of x which is contained in V, i.e. $x \in U_x \subseteq V$.

Proposition: A subset C of a metric space (X, d) is closed if and only if whenever $\{x_n\}$ is a convergent sequence such that $\{x_n\} \subseteq C$, then $\lim x_n \in C$.

2
Sequential compactness:

A subset C of a metric space X is **sequentially compact** if any sequence $\{x_n\}$ in C has a convergent subsequence $\{x_{n_j}\}$ with limit in C, i.e. $\lim x_{n_j} \in C$.

A subset A of a metric space X is **bounded** if there exists $x_0 \in X$ and $R > 0$ such that $A \subset D(x_0, R)$.

Proposition: A sequentially compact subset of a metric space is closed and bounded.

Proposition: If C is a closed subset of a sequentially compact metric space X, then C is sequentially compact.

Proposition: If $f : X \rightarrow Y$ is a continuous map between metric spaces and $C \subset X$ is sequentially compact, then $f(C)$ is sequentially compact.

Theorem: If $f : X \rightarrow \mathbb{R}$ is continuous and $C \subset X$ is sequentially compact, then there exists $c \in C$ such that $f(c) = \sup f(C)$, i.e. f achieves its supremum on C.

Theorem: A subset of \mathbb{R}^n is sequentially compact if and only if it is closed and bounded.

Lemma: A Cauchy sequence $\{x_n\}$ in a sequentially compact metric space is convergent.

Topological spaces

If X is a set, then a collection \mathcal{T} of subsets of X is a **topology** if

1. $\emptyset, X \in \mathcal{T}$,
2. If $\{U_\alpha\}_{\alpha \in \Lambda}$ is a collection of elements of \mathcal{T}, then their union $\bigcup_{\alpha \in \Lambda} U_\alpha$ is also an element of \mathcal{T}, and
3. If $U_1, U_2 \in \mathcal{T}$, then $U_1 \cap U_2 \in \mathcal{T}$

The pair (X, \mathcal{T}) is called a topological space and elements of \mathcal{T} are called **open** sets in X. A subset C of X is **closed** if and only if $X - C$ is open.

A function $f : (X_1, \mathcal{T}_1) \rightarrow (X_2, \mathcal{T}_2)$ between topological spaces is **continuous** if whenever $V \in \mathcal{T}_2$, then $f^{-1}(V) \in \mathcal{T}_1$.

A map $f : (X_1, \mathcal{T}_1) \rightarrow (X_2, \mathcal{T}_2)$ is a **homeomorphism** if it is one-to-one, onto and continuous and its inverse map $f^{-1} : (X_2, \mathcal{T}_2) \rightarrow (X_1, \mathcal{T}_1)$ is also continuous.

If \mathcal{T} is a topology for A, then a subset \mathcal{B} of \mathcal{T} is a **basis** if every element of \mathcal{T} is a union of elements of \mathcal{B}.

Facts:
1. A function $f : (X_1, \mathcal{T}_1) \rightarrow (X_2, \mathcal{T}_2)$ between topological spaces is continuous if and only if whenever C is closed in X_2, $f^{-1}(C)$ is closed in X_1.
2. Suppose that (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) are topological spaces and \mathcal{B}_2 is a basis for \mathcal{T}_2. A function $f : (X_1, \mathcal{T}_1) \rightarrow (X_2, \mathcal{T}_2)$ is continuous if and only if whenever B is an element of \mathcal{B}_2, $f^{-1}(B)$ is open in X_1.

If X is any set, then the **indiscrete** topology on X is given by $\mathcal{T}_{\text{indiscrete}} = \{\emptyset, X\}$, while the **discrete** topology $\mathcal{T}_{\text{discrete}}$ is given by the collection of all subsets of X.

Fact: If (X, \mathcal{D}) is a metric space, then the collection \mathcal{T}_d of all open subsets in the metric space forms a topology on X.

If (X, \mathcal{T}) is a topological space and $A \subset X$, then the **subspace topology** on A is given by $\mathcal{T}_A = \{A \cap U \mid U \in \mathcal{T}\}$.
A topological space \((X, \mathcal{T})\) is **metrizable** if there exists a metric \(d\) on \(X\) such that \(\mathcal{T} = \mathcal{T}_d\).

A topological space \(X\) is **Hausdorff** if whenever \(x\) and \(y\) are distinct points in \(X\), then there exist disjoint open sets \(U\) and \(V\) in \(X\) so that \(x \in U\) and \(y \in V\).

Fact: Any metrizable topological space is Hausdorff.

If \(A\) is a subset of a topological space \(X\), then \(x \in \overline{A}\) if every open neighborhood of \(x\) intersects \(A\). Moreover, \(x \in A^0\) if there exists an open neighborhood of \(x\) which is contained in \(A\).

Facts:

1. \(A^0 \subset A \subset \overline{A}\).

2. \(A^0\) is open and \(\overline{A}\) is closed in \(X\).

3. If \(C\) is a closed subset of \(X\) and \(A \subset C\), then \(\overline{A} \subset C\).

4. \(A\) is closed if and only if \(A = \overline{A}\).

5. \(A\) is open if and only if \(A = A^0\).

The product topology

If \((X, \mathcal{T}_X)\) and \((Y, \mathcal{T}_Y)\) are topological spaces then we say that \(W \in \mathcal{T}_{X \times Y}\) if for each \((x, y) \in W\), there exists \(U_{(x,y)} \in \mathcal{T}_X\) and \(V_{(x,y)} \in \mathcal{T}_Y\) such that
\[(x, y) \in U_{(x,y)} \times V_{(x,y)} \subset W.\]

\(\mathcal{T}_{X \times Y}\) is called the **product topology** on \(X \times Y\).

Fact: If \((X_1, \mathcal{T}_1)\) and \((X_2, \mathcal{T}_2)\) are topological spaces, then
\[\mathcal{B} = \{V_1 \times V_2 \mid V_1 \in \mathcal{T}_1, V_2 \in \mathcal{T}_2\}\]

is a basis for the **product topology** on \(X_1 \times X_2\).

If \((X, d_X)\) and \((Y, d_Y)\) are metric spaces, then
\[d_\infty((x_1, y_1), (x_2, y_2)) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}\]

is a metric on \(X \times Y\) and \(d_\infty\) induces the product topology associated to \((X, \mathcal{T}_{d_X})\) and \((Y, \mathcal{T}_{d_Y})\) on \(X \times Y\).

Facts: (Suppose that \((X, \mathcal{T}_X)\) and \((Y, \mathcal{T}_Y)\) are topological spaces and \(X \times Y\) is given the product topology.

1. \(X \times Y\) is Hausdorff if and only \(X\) and \(Y\) are Hausdorff.

2. \(\pi_X : X \times Y \to X\) (given by \(\pi_X(x, y) = x\)) and \(\pi_Y : X \times Y \to Y\) (given by \(\pi_Y(x, y) = y\)) are continuous, open maps.

3. If \((Z, \mathcal{T}_Z)\) is a topological space and \(f : Z \to X\) and \(g : Z \to Y\) are continuous and \(h : Z \to X \times Y\) is given by \(h(z) = (f(z), g(z))\), then \(h\) is continuous.

Connectedness

A topological space \((X, \mathcal{T})\) is **disconnected** if there exist disjoint non-empty open subsets \(U\) and \(V\) such that \(X = U \cup V\). A topological space is called **connected** if it is not disconnected.

Fact: A topological space \(X\) is disconnected if and only if there exists a continuous, onto function \(f : X \to \{0, 1\}\) (where \(\{0, 1\}\) is given the discrete topology).
A subset A of a topological space X is said to be disconnected if it is disconnected in the subspace topology, i.e. (A, T_A) is disconnected. Equivalently, a subset A of X is disconnected if and only if there exist open sets U and V in X such that $A \subset U \cup V$, $(U \cap V) \cap A = \emptyset$, and $A \cap U$ and $A \cap V$ are both non-empty.

A non-empty subset S of \mathbb{R} is an interval if and only whenever $x, y \in S$ and $x < z < y$, then $z \in S$. An interval $J \subset \mathbb{R}$ has the form either $[a, b]$, $]a, b[$, $(a, b]$, $(-\infty, b]$, $(-\infty, b)$, (a, ∞), $[a, \infty)$, \mathbb{R} or $\{a\}$ where $a, b \in \mathbb{R}$ and $b > a$.

Facts:

1. A non-empty subset of \mathbb{R} is connected if and only if it is an interval.
2. If $f : X \to Y$ is continuous and X is a connected topological space, then $f(X)$ is connected.
3. If $f : X \to \mathbb{R}$ is continuous, X is a connected topological space, $a, b \in f(X)$ and c lies between a and b, then there exists $x \in X$ such that $f(x) = c$.
4. If $A \subset X$ and A is connected, then \overline{A} is also connected.
5. If A and B are connected subsets of a topological space X and $A \cap B \neq \emptyset$, then $A \cup B$ is a connected subset of X.
6. If (X, T_X) and (Y, T_Y) are topological spaces, then $X \times Y$ is connected in the product topology if and only if X and Y are connected.

If a and b are points in a topological space X, then a path joining a to b, is a continuous function $\gamma : [0, 1] \to X$ such that $\gamma(0) = a$ and $\gamma(1) = b$. A topological space is path connected if any two points in the space may be joined by a path.

Facts:

1. A path connected topological space is connected.
2. If $f : X \to Y$ is continuous and X is a path connected topological space, then $f(X)$ is path connected.
3. A product of two path connected topological spaces is path connected.

Compactness

A collection $\mathcal{U} = \{U_a\}_{a \in \Lambda}$ of open subsets of a topological space X is an open cover of X if $\bigcup_{a \in \Lambda} U_a = X$. A subcover of \mathcal{U} is a subcollection $\mathcal{V} \subset \mathcal{U}$ which is also an open cover of X. A topological space is compact if every open cover has a finite subcover.

A subset A of X is said to be compact if it is compact in the subspace topology. Equivalently, A is a compact subset of X if and only if whenever $\mathcal{U} = \{U_a\}_{a \in \Lambda}$ is a collection of open subsets of X such that

$$A \subset \bigcup_{a \in \Lambda} U_a,$$

then there exists a finite subcollection

$$\{U_{a_1}, \ldots, U_{a_n}\} \subset \{U_a\}_{a \in \Lambda}$$

such that

$$A \subset U_{a_1} \cup \cdots \cup U_{a_n}.$$

Facts:

1. If $f : X \to Y$ is continuous and X is a compact topological space, then $f(X)$ is compact.
2. Any compact subset of a Hausdorff topological space is closed.
3. Any closed subset of a compact topological space is compact.
4. If $f : X \to \mathbb{R}$ is a continuous function and X is a compact topological space, then there exists
z \in X \text{ such that } f(z) = \sup f(X), \text{ i.e. } f \text{ achieves its supremum.}

(5) If \((X, d)\) is a metric space, then \(X\) is compact if and only if it is sequentially compact.

(6) A product of two topological spaces is compact if and only if each space is compact.

(7) If \(X\) is a sequentially compact metric space, and \(U\) is an open cover of \(X\), then there exists \(\delta > 0\) such that if \(x \in X\), then there exists \(U \in U\) such that \(B(x, \delta) \subset U\).

(8) If \(X\) is sequentially compact and \(\epsilon > 0\), then there exists a finite collection of points \(\{x_1, \ldots, x_n\}\) in \(X\) so that the corresponding collection of \(\epsilon\)-balls \(\{B(x_1, \epsilon), \ldots, B(x_n, \epsilon)\}\) covers \(X\).

(9) If \(X\) is a compact and Hausdorff topological space and \(C\) is a closed subset of \(X\) and \(x \in X \setminus C\), then there exist disjoint open sets \(U\) and \(V\) in \(X\) so that \(C \subset U\) and \(x \in V\).

DeMorgan’s Laws: Let \(X\) be a set and let \(\{A_\alpha\}_{\alpha \in \Lambda}\) be a collection of subsets of \(X\).

1. \(X \setminus \bigcup_{\alpha \in \Lambda} A_\alpha = \bigcap_{\alpha \in \Lambda} (X \setminus A_\alpha)\)
2. \(X \setminus \bigcap_{\alpha \in \Lambda} A_\alpha = \bigcup_{\alpha \in \Lambda} (X \setminus A_\alpha)\)