(1) Suppose \(f : \mathbb{R}^d \to \mathbb{R} \) is a \(C^2 \) function. Show that \(f \) is convex if and only if the second derivative matrix \(D^2 f \) is nonnegative definite.

(2) Suppose \(C \) and \(D \) are disjoint convex subsets of \(\mathbb{R}^{d+1} \). Prove there exists a \(d \) dimensional hyperplane \(H_d \) which separates \(C \) from \(D \).

(3) Suppose \(A \) is an \(m \times n \) matrix with adjoint \(A^* \), \(c \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \). Show that
\[
\inf \{ c \cdot x \mid x \in \mathbb{R}^n, \ Ax = b, \ x \geq 0 \} = \sup \{ b \cdot y \mid y \in \mathbb{R}^m, \ A^* y \leq c \} .
\]

(4) Let \(f : \mathbb{R}^d \to \mathbb{R} \cup \{ \infty \} \) be a closed convex function and
\[
C = \{(x,y) \in \mathbb{R}^{d+1} : f(x) < \infty, \ y \geq f(x) \} .
\]
(a) Show that \(C \) is a closed convex set.
(b) Suppose \((x_0, y_0) \notin C \). Show there exists \(m \in \mathbb{R}^d \) such that
\[
C \subset \{ (x,y) : y > y_0 + m \cdot (x - x_0) \} .
\]

(5) (a) Find the Legendre transforms \(f^* \) of the functions \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = |x|^p/p, \ p > 1 \), and \(f(x) = e^{\vert x \vert} \).
(b) Verify for the functions in (a) that the Legendre transform of \(f^* \) is again \(f \).

(6) For a function \(H : \mathbb{R}^2 \to \mathbb{R} \) which we write as \(H(x,v) \) let \(\hat{H} \) be the Legendre transform of \(H \) in the second variable \(v \) i.e.
\[
\hat{H}(x,z) = \sup_{v \in \mathbb{R}} [vz - H(x,v)] .
\]
Assuming that \(H \) and \(\hat{H} \) are \(C^2 \) functions prove that under the change of variable \(z = H_v \), there are the following relations between partial
derivatives of H and of \hat{H}:

$$v = \hat{H}_z, \quad H_x = -\hat{H}_x, \quad H_{vv} = \frac{1}{\hat{H}_{zz}},$$

$$H_{xv} = -\frac{\hat{H}_{xz}}{\hat{H}_{zz}}, \quad H_{xx} = \frac{(\hat{H}_{xz})^2}{\hat{H}_{zz}} - \hat{H}_{xx}.$$