Math 566
Problem Set 1

(1) Prove that the number of walks of length ℓ between two distinct vertices of the complete graph K_p differs by 1 from the number of closed walks of length ℓ originating at a given vertex.

(2) Prove that the diameter of a connected graph is less than the number of its distinct eigenvalues.

(3) Prove that the largest eigenvalue λ_{max} of a graph G is at least the average degree of the vertices in G.

[Hint: Use that, for a symmetric real matrix M, one has $\max_{|x|=1} x^T M x = \lambda_{\text{max}}$.]

(4) Let G be a graph obtained by removing n disjoint edges from the complete bipartite graph $K_{n,n}$. Compute the eigenvalues of G.

(5) Find the eigenvalues of the graph obtained by removing n disjoint edges from the complete graph K_{2n}.

(6) Find the number of marked closed walks of length ℓ in the graph below.

(7) Find the eigenvalues of the 1-skeleton of an octagonal prism.

(8) Find a combinatorial proof (using generating functions) of the formula for the number of marked closed walks of length ℓ in the n-cube:

$$\sum_{i=0}^{n} \binom{n}{i} (n-2i)^\ell.$$

(9) Find the probability that a simple random walk on the discrete torus with n^2 vertices (the direct product of two n-cycles) returns to its origin after ℓ steps.