For the first two problems, consider the graph to the right.

1. (2 points) Suppose that the graph shows a function \(f(x) \) and a line tangent to the curve \(y = f(x) \) (the solid line). If the equation of the line is \(y = 3 - x \), fill in the following blanks:
 \[
 f(\square) = _

 f'(\square) = _
 \]

2. (4 points) Now suppose that the curve graphed is \(g'(x) \) for some function \(g \). The indicated line is still \(y = 3 - x \), and is tangent to the graph of \(y = g'(x) \). Assume that \(g(x) \) and its derivatives are defined only for \(\frac{1}{2} \leq x \leq 2\frac{1}{2} \). Where (for what \(x \)-value) is
 \[
 g(x) \text{ smallest?} \quad g'(x) \text{ smallest?} \quad g''(x) \text{ smallest?} \\
 g(x) \text{ largest?} \quad g'(x) \text{ largest?} \quad g''(x) \text{ largest?}
 \]
 Are the largest values of \(g'(x) \) and \(g''(x) \) greater than 1? Greater than 2? Greater than 3? (How do you know?)

3. (4 points) A Purple-Headed Uniquely Nocturnal Chartreuse And Luridly Colored wombat is sighted moving across the diag. Its position, measured in feet from the West Engineering arch, is given as a function of time (in minutes past midnight) in the following table.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(0)</th>
<th>(5)</th>
<th>(10)</th>
<th>(15)</th>
<th>(20)</th>
<th>(25)</th>
<th>(30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>(0)</td>
<td>(7)</td>
<td>(15)</td>
<td>(27)</td>
<td>(30)</td>
<td>(31)</td>
<td>(218)</td>
</tr>
</tbody>
</table>

 a. Estimate the wombat’s velocity at \(t = 0 \), \(t = 5 \), \(t = 10 \) and \(t = 15 \).
 b. Estimate the wombat’s acceleration at \(t = 5 \) and \(t = 10 \).
 c. What do you think happened between \(t = 25 \) and \(t = 30 \)?