1. Suppose that the value of a highly-prized silver-plated author-signed calculus textbook is given, in dollars, by
\[V(t) = 100(1.05^t - 0.02t), \]
where \(t \) is the number of years from the publication date of the text. At what rate is the value changing seven years after the book’s publication? (3 points)

Solution: The rate of change is given by the derivative, which, using shortcuts, is
\[V'(t) = 100(\ln(1.05) \cdot 1.05^t - 0.02). \]
Thus after five years, we have
\[V'(7) = 100(\ln(1.05) \cdot 1.05^7 - 0.02) \approx 4.87 \text{ dollars/year}. \]
Thus after seven years, the book is appreciating at a rate of $4.87/year.

2. For what values of \(x \) is \(f(x) = 4x^2 - 3x \) both increasing and concave up? (Use your knowledge of derivatives to answer this question—though your calculator may be useful as you work out your answer.) (4 points)

Solution: We know that the function is increasing when its derivative is greater than zero. Here,
\[f'(x) = 8x - \ln(3) \cdot 3^x, \] so we want \(8x - \ln(3) \cdot 3^x > 0. \) Similarly, the function is concave up when its second derivative is greater than zero. Taking the derivative of \(f'(x) \), we have
\[f''(x) = 8 - (\ln(3))^2 \cdot 3^x, \] so we want \(8 - (\ln(3))^2 \cdot 3^x > 0, \) or \(3^x < 8/(\ln(3))^2. \) Taking the natural log of both sides and solving for \(x \), this becomes \(x < \ln(8/(\ln(3))^2), \) or, finding a decimal approximation, \(x < 1.797. \)

Using the derivative condition is, unfortunately, more difficult: it’s not possible to explicitly solve \(8x - \ln(3) \cdot 3^x = 0 \) for \(x \). So let’s approximate it on a calculator: graphing \(y = 8x - \ln(3) \cdot 3^x, \) we see that \(y > 0 \) for, approximately, \(0.165 < x < 2.717. \) From the condition on \(f''(x) \), we know that \(x < 1.797, \) so the range of values on which \(f(x) \) is both increasing and concave up is, approximately, \(0.165 < x < 1.797. \)

3. Given the following data for \(f, g, f' \) and \(g' \),

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(f)</td>
<td>(f')</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-1</td>
</tr>
</tbody>
</table>

a. if \(h(x) = f(x) \cdot g(x) \), find \(h'(1). \)

b. if \(p(x) = f(x)/g(x) \), find \(p'(2). \)

(3 points)

Solution: We know from the product and quotient rules that
\[h'(1) = f'(1) \cdot g(1) + f(1) \cdot g'(1) = (-2)(-4) + (6)(3) = 8 + 18 = 26 \]
and
\[p'(2) = \frac{f'(2) \cdot g(2) - f(2) \cdot g'(2)}{g(2)^2} = \frac{(-1)(-3) - (4)(5)}{9} = -\frac{17}{9}. \]