1. Find a possible formula for an exponential function that could give the graph to the right.

Solution: Let's write the function as \(f(x) = y_0 a^x \). We know that \(f(0) = 2 \), so \(y_0 = 2 \). Then \(f(3) = 2a^3 = 1 \). This gives \(a^3 = \frac{1}{2} \), so \(a = \sqrt[3]{\frac{1}{2}} = \left(\frac{1}{2}\right)^{1/3} \), and the function is \(f(x) = 2 \left(\frac{1}{2}\right)^{x/3} \).

2. On the figures below, which show a function \(f(x) \), sketch on the left \(\frac{1}{2} f(x + 2) \) and on the right \(f(-x) \). Assume that the grid lines are spaced by units of 1 in both directions.

Solution: The first of these is shifted left 2 units and scrunched by a factor of 2. The second is reflected around the \(y \)-axis.

3. For \(g(z) = 3z^2 - 2z \) and \(p(z) = z + h \), find \(g(p(z)) \).

Solution: Plugging in \(p(z) \), we have \(g(p(z)) = g(z + h) \). Replacing each \(z \) in \(g(z) \) with \(z + h \), we get \(g(p(z)) = 3(z + h)^2 - 2(z + h) \).

4. Let \(f(t) = P_0 e^{kt} \). If \(f(1) = 1 \) and \(f(3) = 2 \), find an explicit formula for \(f(t) \).

Solution: We know \(f(1) = P_0 e^k = 1 \) and \(f(3) = P_0 e^{2k} = 2 \), so, multiplying the first equation by 2 and setting them equal, we have \(2P_0 e^k = P_0 e^{2k} \). Thus \(e^k = 2 \), and \(k = \ln(2) \). Plugging this into \(f(1) = P_0 e^k = 1 \), we get \(P_0 e^{\ln(2)} = 1 \), or \(2P_0 = 1 \), so \(P_0 = \frac{1}{2} \). The explicit formula for \(f(t) \) is therefore \(f(t) = \frac{1}{2} e^{\ln(2)t} \).