1. (4 points) The following table gives values for \(f(x) \), \(f'(x) \), \(g(x) \), and \(g'(x) \) at different values of \(x \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1</td>
<td>2</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>2</td>
<td>−1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(g(x))</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(g'(x))</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>−1</td>
</tr>
</tbody>
</table>

a. If \(p(x) = f(g(x)) \), find \(p'(1) \).

b. If \(q(x) = f(x) \cdot g(x) \), find \(q'(1) \).

Solution: For part (a): \(p'(x) = f'(g(x)) \cdot g'(x) \), so \(p'(1) = f'(g(1)) \cdot g'(1) \). \(g(1) = 2 \), so this is \(p'(1) = f'(2) \cdot g'(1) \). Reading these off the table, we have \(p'(1) = 1 \cdot 3 = 3 \).

For part (b): \(q'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \), so \(q'(1) = f'(1) \cdot g(1) + f(1) \cdot g'(1) \). Reading these values off the table, we have \(q'(1) = −1 \cdot 2 + 2 \cdot 3 = 4 \).

2. (2 points) If \(3xy + \cos(y) + 4 = x^3 \), find \(\frac{dy}{dx} \).

Solution: Differentiating both sides of the equation, and remembering to consider \(y \) as a(n implicit) function of \(x \), we get

\[
3y + 3x \frac{dy}{dx} - \sin(y) \frac{dy}{dx} = 3x^2, \quad \text{or}
\]

\[
(3x - \sin(y)) \frac{dy}{dx} = 3x^2 - 3y,
\]

so

\[
\frac{dy}{dx} = \frac{3x^2 - 3y}{3x - \sin(y)}.
\]

3. (2 points) If \(y = 3x - 3 \) is the linear approximation to \(f(x) = x^2 - (a + 1)x + a \) at \(x = 1 \), what is \(a \)?

Solution: We know that \(y = 3x - 3 \) must have the same \(y \) value as \(y = f(x) \) at \(x = 1 \), and that its slope must be equal to \(f'(1) \). At \(x = 1 \), the \(y \) value on the line is \(y = 3 - 3 = 0 \), and \(f(1) = 1 - a - 1 + a = 0 \), so that doesn’t tell us anything.

Then \(f'(x) = 2x - (a + 1) \), so \(f'(1) = 2 - a - 1 = 1 - a \). Because \(f'(1) = 3 \), this is \(1 - a = 3 \), or \(a = -2 \).