1. (3 points) A stained glass window is to be made in the shape shown to the right, with a rectangular section surmounted by a semi-circular top. If \(P \) ft of border material are available, what should the dimensions of the window be to maximize its area? (You may assume that \(P > 2 \). The circumference of a circle is \(C = 2\pi r \).)

Solution: The area of the window is the sum of the area of the rectangular section and the area of the semi-circular top, so
\[
A = 2rh + \frac{1}{2}\pi r^2.
\]
To get this to a single variable, use the constraint that the perimeter is \(P \) ft long:
\[
P = 2h + 2r + \frac{1}{2}\pi r = 2h + (2 + \pi)r,
\]
so, solving for \(h \),
\[
h = \frac{P}{2} - (1 + \frac{\pi}{2})r.
\]
Plugging this in to \(A \),
\[
A = \frac{P}{2}r - (1 + \frac{\pi}{2})\frac{1}{2}\pi r^2
\]
This will be maximized at the end points (\(r = 0 \), where \(h = \frac{P}{2} \), or \(r = \frac{P}{\pi} \), where \(h = 0 \)), or at critical points. Critical point(s) are where \(A'(r) = P - (4 + \pi)r = 0 \), or \(r = \frac{P}{4 + \pi} \). Here \(A''(r) = -(4 + \pi) \), so we know that \(A(r) \) is concave down, and therefore, because this is the only critical point, we know this will give the maximum value for \(A \). For this \(r \), \(h = \frac{P}{2} - (1 + \frac{\pi}{2})(\frac{P}{4 + \pi}) \).

What’s with the \(P > 2 \)? It’s a red herring.

2. (2 points) Suppose that the velocity of an orange-and-chartreuse-clothed math professor gradually increases in the course of a class period, and is given (in meters/second) by \(v(t) = 2e^{t^2} \) (where \(t \) is in hours). Use a Riemann sum with \(\Delta t = 0.5 \) hr to estimate the total distance travelled by the professor during an hour and a half class period.

Solution: Note that the velocity is in m/s, while time is given in hours (3600 sec). We know that the distance travelled is
\[
D = \int_0^{1.5} v(t) \, dt \approx (0.5)(v(0) + v(0.5) + v(1))
\]
\[
= (0.5)(2 + 2.57 + 5.44) = 5.01 \text{ m/s · hr}.
\]
Converting hours to seconds, this is 5.01 · 3600 = 18,036 m. We could, of course, use a right-hand sum instead, to get \(D \approx (0.5)(v(0.5) + v(1) + v(1.5)) = 13.50 \times 3600 \) m.

3. (3 points) Find the average value of the function shown to the right, for the domain shown. The arc in the figure is a semi-circle. Be sure it is clear how you obtain your answer.

Solution: The average value of the function, which we’ll call \(f(x) \), is \(\frac{1}{b-a} \int_a^b f(x) \, dx \). Here \(a = -1 \) and \(b = 4 \), and the value of the integral is equal to the area under the curve \(y = f(x) \) (treating area below the \(x \)-axis as negative). This area is shown in the figure, with negative area hatched instead of shaded. Thus, taking each geometrically distinct section of \(f \) in turn, \(\int_{-1}^4 f(x) \, dx = -\frac{1}{2} + \frac{1}{4}\pi + 1 + \frac{3}{2} = 2 + \frac{\pi}{2} \). The average value is therefore \(\frac{2}{5} + \frac{\pi}{10} \).