1. A calculus student is racing to get to the gateway lab to start taking the Entrance Gateway at the instant the doors open. The student’s velocity, \(v(t) \) (in m/s) is shown in the graph to the right for \(0 \leq t \leq 8 \) seconds. Write an integral that gives the distance the student travels in those 8 sec, and estimate this distance. (3 points)

Solution: The distance travelled is just \(\int_0^8 v(t) \, dt \). We can approximate this with a left- or right-hand sum, or the average of the two. A left-hand sum is \(\int_0^8 v(t) \, dt \approx 2(0 + 10 + 12.5 + 15) = 75 \) m, and a right-hand sum \(\int_0^8 v(t) \, dt \approx 2(10+12.5+15+15) = 105 \) m. The average is likely to be a more accurate estimate, giving \(\int_0^8 v(t) \, dt \approx 90 \) m.

2. Consider the integral \(\int_0^{3\pi/2} 1 + \sin(x) \, dx \). Let LHS\((n) \) and RHS\((n) \) be, respectively, the left- and right-hand sums with \(n \) subdivisions approximating this integral. By looking at a graph (not by evaluating them), place in increasing order the following quantities: LHS\((3) \), RHS\((1) \), and \(\int_0^{3\pi/2} 1 + \sin(x) \, dx \). (3 points)

Solution: See the figure to the right. Clearly LHS\((3) \) > the area under the curve, and at \(x = \frac{3\pi}{2} \), \(1 + \sin(3\pi/2) = 0 \), so RHS\((1) = 0 \). Thus we have RHS\((1) < \int_0^{3\pi/2} 1 + \sin(x) \, dx < \text{LHS}(3) \).

3. Find each of the following derivatives (you need not simplify your answers). (4 points)
 a. \(\frac{d}{dx}(3x\sin(x^2 + 1)) \)
 b. \(\frac{d}{dt}(e^{2t}) \)

Solution: a. \(\frac{d}{dx}(3x\sin(x^2 + 1)) = 3\sin(x^2 + 1) + 6x\cos(x^2 + 1) \).
 b. \(\frac{d}{dt}(e^{2t}) = \frac{2e^{2t}\ln(t) - e^{2t}}{(\ln(t))^2} \) (or, \(= 2e^{2t}(\ln(t))^{-1} - e^{2t}(\frac{1}{2})(\ln(t))^{-2} \)).