1. Recall that the Taylor series for \(\sin(x) \) is \(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \). Find the Taylor series for \(\text{Si}(x) = \int_0^x \frac{\sin(t)}{t} \, dt \).

\[\text{Solution:} \] We know that \(\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \), so \(\frac{\sin(t)}{t} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n+1)!} \). Integrating, we have

\[\text{Si}(x) = \int_0^x \frac{\sin(t)}{t} \, dt = \int_0^x \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n+1)!} \, dt. \]

We assume that we can integrate term-by-term, to get

\[\text{Si}(x) = \sum_{n=0}^{\infty} \int_0^x \frac{(-1)^n t^{2n}}{(2n+1)!} \, dt = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)(2n+1)!}. \]

We could also work this out with an expanded form of the series: \(\text{Si}(x) = \int_0^x (1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \cdots + (-1)^n \frac{x^{2n}}{(2n+1)!} + \cdots) \, dt = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \cdots + (-1)^n \frac{x^{2n+1}}{(2n+1)(2n+1)!} + \cdots \). Note that because \(\text{Si}(x) \) is defined as the integral from \(t = 0 \) to \(t = x \) we don’t have a constant of integration in this problem.

2. Suppose that we know that \(\frac{dy}{dx} = f(y) \) for some function \(f(y) \). Also suppose that we approximate the solution to this differential equation, with initial condition \(y(0) = 0 \), with Euler’s method and \(\Delta x = 0.5 \).

(a) If we find \(y(0.5) \approx 1 \), \(y(1) \approx 1.5 \), \(y(1.5) \approx 1.75 \), and \(y(2) \approx 1.875 \),

\[\text{Solution:} \] We know that in general Euler’s method gives \(y(x + \Delta x) = y(x) + \Delta x f(y(x)) \) (that is, \(y_{n+1} = y_n + \Delta x f(y_n) \)). Thus we know that \(y(0.5) = 1 = 0 + 0.5 \cdot f(0) \), and thus \(f(0) = \frac{dy}{dx} \big|_{x=0} = 2 \). Similarly, with \(y(1) = 1.5 \), we have \(y(1) = 1.5 = 1 + 0.5 \cdot f(0.5) \), so \(f(0.5) = \frac{dy}{dx} \big|_{x=0.5} = 1 \). And finally, we have \(y(1.5) = 1.75 \), so \(y(1.5) = 1.75 = 1.5 + 0.5 \cdot f(1) \), and \(f(1) = \frac{dy}{dx} \big|_{x=1} = 0.5 \). Then we know that the slope of solutions to the differential equation are the same at any given \(y \) value, so that we have the slope field shown to the right.

(b) Give a rough sketch of the slope field of this differential equation.

3. Find all solutions to the differential equation \(\frac{1}{t} \frac{dx}{dt} + p = 2 \).

\[\text{Solution:} \] Rearranging the equation, we have \(\frac{dx}{dt} = t(2 - p) \). Note that \(p = 2 \) is therefore a solution. If \(p \neq 2 \), then \(\frac{dx}{2p} = t \, dt \), so that \(-\ln|2 - p| = \frac{1}{2} t^2 + C \). Solving for \(p \), we have \(p = 2 - Ae^{-t^2/2} \). Thus solutions are \(p = 2 \) or \(p = 2 - Ae^{-t^2/2} \).