FINITE GROUP ACTIONS ON REDUCTIVE GROUPS AND
BUILDINGS AND TAMELY-RAMIFIED DESCENT IN
BRUHAT-TITS THEORY

By Gopal Prasad

Dedicated to Guy Rousseau

Abstract. Let K be a discretely valued field with Henselian valuation ring and separably closed (but not necessarily perfect) residue field of characteristic p, H a connected reductive K-group, and Θ a finite group of automorphisms of H. We assume that p does not divide the order of Θ and Bruhat-Tits theory is available for H over K with $B(H/K)$ the Bruhat-Tits building of $H(K)$. We will show that then Bruhat-Tits theory is also available for $G := (H^\Theta)^\circ$ and $B(H/K)^\Theta$ is the Bruhat-Tits building of $G(K)$. (In case the residue field of K is perfect, this result was proved in [PY1] by a different method.) As a consequence of this result, we obtain that if Bruhat-Tits theory is available for a connected reductive K-group G over a finite tamely-ramified extension L of K, then it is also available for G over K and $B(G/K) = B(G/L)^{\text{Gal}(L/K)}$. Using this, we prove that if G is quasi-split over L, then it is already quasi-split over K.

Introduction. This paper is a sequel to our recent paper [P2]. We will assume familiarity with that paper; we will freely use results, notions and notations introduced in it.

Let \mathcal{O} be a discretely valued Henselian local ring with valuation ω. Let \mathfrak{m} be the maximal ideal of \mathcal{O} and K the field of fractions of \mathcal{O}. We will assume throughout that the residue field κ of \mathcal{O} is separably closed. Let $\hat{\mathcal{O}}$ denote the completion of \mathcal{O} with respect to the valuation ω and \hat{K} the completion of K. For any \mathcal{O}-scheme \mathcal{X}, $\mathcal{X}(\mathcal{O})$ and $\mathcal{X}(\hat{\mathcal{O}})$ will always be assumed to carry the Hausdorff-topology induced from the metric-space topology on \mathcal{O} and $\hat{\mathcal{O}}$ respectively. It is known that if \mathcal{X} is smooth, then $\mathcal{X}(\mathcal{O})$ is dense in $\mathcal{X}(\hat{\mathcal{O}})$, [GGM, Prop. 3.5.2]. Similarly, for any K-variety \mathcal{X}, $\mathcal{X}(K)$ and $\mathcal{X}(\hat{K})$ will be assumed to carry the Hausdorff-topology induced from the metric-space topology on K and \hat{K} respectively. In case \mathcal{X} is a smooth K-variety, $\mathcal{X}(K)$ is dense in $\mathcal{X}(\hat{K})$, [GGM, Prop. 3.5.2].

Throughout this paper H will denote a connected reductive K-group. In this introduction, and beginning with §2 everywhere, we will assume that Bruhat-Tits theory is available for H over K [P2, 1.9, 1.10]. Then Bruhat-Tits theory is also available for the derived subgroup $\mathcal{D}(H)$ of H over K [P2, 1.11]. Thus there is an affine building called the Bruhat-Tits building of $H(K)$, that is a polysimplicial complex given with a metric, and $H(K)$ acts on it by polysimplicial isometries.
This building is also the Bruhat-Tits building of $\mathcal{D}(H)(K)$ and we will denote it by $\mathcal{B}(\mathcal{D}(H)/K)$. It is known (cf. [P2, 3.11, 1.11]) that Bruhat-Tits theory is also available over K for the centralizer of any K-split torus in H and for the derived subgroup of such centralizers.

Let \mathfrak{Z} be the maximal K-split torus in the center of H. Let $V(\mathfrak{Z}) = \mathbb{R} \otimes_{\mathbb{Z}} \text{Hom}_K(\text{GL}_1, \mathfrak{Z}_K)$. Then there is a natural action of $H(K)$ on this Euclidean space by translations, with $\mathcal{D}(H)(K)$ acting trivially. The enlarged Bruhat-Tits building $\mathcal{B}(H/K)$ of $H(K)$ is the direct product $V(\mathfrak{Z}) \times \mathcal{B}(\mathcal{D}(H)/K)$. The apartments of this building, as well as that of $\mathcal{B}(\mathcal{D}(H)/K)$, are in bijective correspondence with maximal K-split tori of H. Given a maximal K-split torus T of H, the corresponding apartment of $\mathcal{B}(H/K)$ is an affine space under $V(T) := \mathbb{R} \otimes_{\mathbb{Z}} \text{Hom}_K(\text{GL}_1, T)$.

Given a nonempty bounded subset Ω of an apartment of $\mathcal{B}(\mathcal{D}(H)/K)$, there is a smooth affine \mathcal{O}-group scheme \mathcal{H}_Ω with generic fiber H, associated with Ω, such that $\mathcal{H}_\Omega(0)$ is the subgroup $H(K)^{\mathcal{O}}$ of $H(K)$ consisting of elements that fix $V(\mathfrak{Z}) \times \Omega \subset \mathcal{B}(H/K)$ pointwise [P2, 1.9.1.10]. The neutral component \mathcal{H}_Ω^0 of \mathcal{H}_Ω is an open affine \mathcal{O}-subgroup scheme of the latter; it is by definition the union of the generic fiber H of \mathcal{H}_Ω and the identity component of its special fiber. The group scheme \mathcal{H}_Ω^0 is called the Bruhat-Tits group scheme associated to Ω. The special fiber of \mathcal{H}_Ω^0 will be denoted by \mathcal{H}_Ω^0.

Let Θ be a finite group of automorphisms of H. We assume that the order of Θ is not divisible by the characteristic of the residue field κ. Let $G = (H^\Theta)^0$. This group is also reductive, see [Ri, Prop. 10.1.5] or [PY1, Thm. 2.1]. The goal of this paper is to show that Bruhat-Tits theory is available for G over K, and the enlarged Bruhat-Tits building of $G(K)$ can be identified with the subspace $\mathcal{B}(H/K)^\Theta$ of $\mathcal{B}(H/K)$ consisting of points fixed under Θ (see §3). These results have been inspired by the main theorem of [PY1], which implies that if the residue field κ is algebraically closed (then every reductive K-group is quasi-split [P2, 1.7], so Bruhat-Tits theory is available for any such group over K), the enlarged Bruhat-Tits building of $G(K)$ is indeed $\mathcal{B}(H/K)^\Theta$.

In §4, we will use the above results to obtain “tamely-ramified descent”: (1) We will show that if a connected reductive K-group G is quasi-split over a finite tamely-ramified extension L of K, then it is quasi-split over K (Theorem 4.4); this result has been proved by Philippe Gille in [Gi] by an entirely different method. (2) The enlarged Bruhat-Tits building $\mathcal{B}(G/K)$ of $G(K)$ can be identified with the subspace of points of the enlarged Bruhat-Tits building of $G(L)$ that are fixed under the action of the Galois group $\text{Gal}(L/K)$. This latter result was proved by Guy Rousseau in his unpublished thesis [Rou, Prop. 5.1.1]. It is a pleasure to dedicate this paper to him for his important contributions to Bruhat-Tits theory.

Acknowledgements. I thank Brian Conrad, Bas Edixhoven and Philippe Gille for their helpful comments. I thank the referee for carefully reading the paper and for her/his detailed comments and suggestions which helped me to improve the exposition. I was partially supported by NSF-grant DMS-1401380.
For a K-split torus S, let $X_*(S) = \text{Hom}(\text{GL}_1, S)$ and $V(S) := \mathbb{R} \otimes_{\mathbb{Z}} X_*(S)$. Then for a maximal K-split torus T of H, the apartment $A(T)$ of $\mathcal{B}(H/K)$ corresponding to T is an affine space under $V(T)$.

1. Passage to completion

We begin by proving the following well-known result.

Proposition 1.1. K-rank $H = \hat{K}$-rank H.

Proof. Let T be a maximal K-split torus of H and Z be its centralizer in H. Let Z_a be the maximal K-anisotropic connected normal subgroup of Z. Then

$$\hat{K} \text{-rank } H = \hat{K} \text{-rank } Z = \dim(T) + \hat{K} \text{-rank } Z_a = K \text{-rank } H + \hat{K} \text{-rank } Z_a.$$

So to prove the proposition, it suffices to show that Z_a is anisotropic over \hat{K}. But according to Theorem 1.1 of [P2], Z_a is anisotropic over \hat{K} if and only if $Z_a(\hat{K})$ is bounded. The same theorem implies that $Z_a(K)$ is bounded. As $Z_a(K)$ is dense in $Z_a(\hat{K})$, we see that $Z_a(\hat{K})$ is bounded. \hfill \square

Proposition 1.2. Bruhat-Tits theory for H is available over K if and only if it is available over \hat{K}. Moreover, if Bruhat-Tits theory for H is available over K, then the enlarged Bruhat-Tits buildings of $H(K)$ and $H(\hat{K})$ are equal.

It was shown by Guy Rousseau in his thesis that the enlarged Bruhat-Tits buildings of $H(K)$ and $H(\hat{K})$ coincide [Rou, Prop. 2.3.5]. Moreover, every apartment in the building of $H(K)$ is also an apartment in the building of $H(\hat{K})$; however, the latter may have many more apartments.

Proof. We assume first that Bruhat-Tits theory is available for H over K and let $\mathcal{B}(H/K)$ denote the enlarged Bruhat-Tits building of $H(K)$. We begin by showing that the action of $H(K)$ on $\mathcal{B}(H/K)$ extends to an action of $H(\hat{K})$ by isometries. For this purpose, we recall that $H(K)$ is dense in $H(\hat{K})$ and the isotropy at any point $x \in \mathcal{B}(H/K)$ is a bounded open subgroup of $H(K)$. Now let $\{h_i\}$ be a sequence in $H(K)$ which converges to a point $\hat{h} \in H(\hat{K})$, then given any open subgroup of $H(K)$, for all large i and j, $h_i^{-1} h_j$ lies in this open subgroup. Thus for any point $x \in \mathcal{B}(H/K)$, the sequence $h_i \cdot x$ is eventually constant, i.e., there exists a positive integer n such that $h_i \cdot x = h_n \cdot x$ for all $i \geq n$. We define $\hat{h} \cdot x = h_n \cdot x$. This gives a well-defined action of $H(\hat{K})$ on $\mathcal{B}(H/K)$ by isometries.

For a nonempty bounded subset Ω of an apartment of the Bruhat-Tits building $\mathcal{B}(\mathcal{O}(H)/K)$, let \mathcal{H}_{Ω} and $\mathcal{H}_{\Omega}^\circ$ be the smooth affine \mathcal{O}-group schemes as in the Introduction. Then as $\mathcal{H}_{\Omega}(\mathcal{O})$ is a closed and open subgroup of $H(\hat{K})$ containing $\mathcal{H}_{\Omega}(\mathcal{O})$ as a dense subgroup, we see that $\mathcal{H}_{\Omega}(\mathcal{O})$ equals the subgroup $H(\hat{K})^\Omega$ of $H(\hat{K})$ consisting of elements that fix $V(\mathcal{O}) \times \Omega$ pointwise.

Let T be a maximal K-split torus of H, then by Proposition 1.1, $T_{\hat{K}}$ is a maximal \hat{K}-split torus of $H_{\hat{K}}$. Let A be the apartment of $\mathcal{B}(H/K)$, or of $\mathcal{B}(\mathcal{O}(H)/K)$,
corresponding to T. Then every maximal \hat{K}-split torus of $H_\mathbb{R}$ is of the form $\hat{h}T_\mathbb{R}\hat{h}^{-1}$ for an $\hat{h} \in H(\hat{K})$, and we define the corresponding apartment to be $\hat{h} \cdot A$. We now declare $\mathcal{B}(H/K)$ (resp. $\mathcal{B}(\mathcal{D}(H)/K)$) to be the enlarged Bruhat-Tits building (resp. the Bruhat-Tits building) of $H(\hat{K})$ with these apartments.

Let A be an apartment of the Bruhat-Tits building of $H(K)$ corresponding to a maximal K-split torus T of H and $\hat{h} \in H(\hat{K})$. Given a nonempty bounded subset $\hat{\Omega}$ of $\hat{A} := \hat{h} \cdot A$, the subset $\Omega := \hat{h}^{-1} \cdot \hat{\Omega}$ is contained in A. The closed and open subgroup $\hat{h}H(\hat{K})^{\Omega} \hat{h}^{-1} = \hat{h}\mathcal{H}_\Omega(\hat{\Omega})\hat{h}^{-1}$ of $H(\hat{K})$ is the subgroup $H(\hat{K})^{\hat{\Omega}}$ consisting of elements that fix $V(3) \times \hat{\Omega}$ pointwise. Now as $H(K)$ is dense in $H(\hat{K})$ and $H(\hat{K})^{\hat{\Omega}}$ is an open subgroup, $H(\hat{K}) = H(\hat{K})^{\hat{\Omega}} : H(K)$, so $\hat{h} = h' \cdot h$, with $h' \in H(\hat{K})^{\hat{\Omega}}$ and $h \in H(K)$. Thus the apartment $\hat{A} = \hat{h} \cdot A = h' \cdot hA$, and hA is an apartment of the Bruhat-Tits building of $H(K)$. As $h' \in H(\hat{K})^{\hat{\Omega}}$, the apartment hA contains $\hat{\Omega}$. This shows that any bounded subset $\hat{\Omega}$ of an apartment of the Bruhat-Tits building of $H(\hat{K})$ is contained in an apartment of the Bruhat-Tits building of $H(K)$. We define the $\hat{\Omega}$-group schemes $\mathcal{H}_\hat{\Omega}$ and $\mathcal{H}_\hat{\Omega}^2$ associated to $\hat{\Omega}$ to be the group schemes obtained from the corresponding $\hat{\Omega}$-group schemes (given by considering $\hat{\Omega}$ to be a nonempty bounded subset of an apartment of the building of $H(\hat{K})$) by extension of scalars $\mathbb{O} \hookrightarrow \hat{\mathbb{O}}$.

Let us assume now that Bruhat-Tits theory is available for H over \hat{K}. Then Bruhat-Tits theory is also available for $\mathcal{D}(H)$ over \hat{K} [P2, 1.11]. The action of $H(\hat{K})$ on its building $\mathcal{B}(\mathcal{D}(H)/\hat{K})$ restricts to an action of $H(K)$ by isometries. Let T be a maximal K-split torus of G and A be the apartment of $\mathcal{B}(\mathcal{D}(H)/\hat{K})$ corresponding to $T_\mathbb{R}$. We consider the polysimplicial complex $\mathcal{B}(\mathcal{D}(H)/\hat{K})$, with apartments $\hat{h} \cdot A$, $h \in H(K)$, as the building of $H(K)$ and denote it by $\mathcal{B}(\mathcal{D}(H)/K)$.

Let $\hat{\Omega}$ be a nonempty bounded subset of the apartment $\hat{A} := \hat{h} \cdot A$, $\hat{h} \in H(\hat{K})$, in the building $\mathcal{B}(\mathcal{D}(H)/\hat{K})$. As $H(K)$ is dense in $H(\hat{K})$, the intersection $\mathcal{H}_\hat{\Omega}^{\hat{\Omega}}(\hat{\Omega})\hat{h} \cap H(K)$ is nonempty. For any h in this intersection, $\hat{\Omega}$ is contained in the apartment $h \cdot A$ of $\mathcal{B}(\mathcal{D}(H)/\hat{K})$. This implies, in particular, that any two facets lie on an apartment of $\mathcal{B}(\mathcal{D}(H)/\hat{K})$. We now note that the $\hat{\Omega}$-group schemes $\mathcal{H}_\hat{\Omega}$ and $\mathcal{H}_\hat{\Omega}^2$ admit unique descents to smooth affine $\hat{\mathbb{O}}$-group schemes with generic fiber H, [BLR, Prop. D.4(b) in §6.1]; the affine rings of these descents are $K[H] \cap \hat{\mathcal{H}}_\hat{\Omega}$ and $K[H] \cap \hat{\mathcal{H}}^{\hat{\Omega}}$ respectively.

In view of the preceding proposition, we may (and do) replace $\hat{\mathbb{O}}$ and K with $\hat{\mathcal{H}}_\hat{\Omega}$ and \hat{K} respectively to assume in the rest of this paper that $\hat{\mathbb{O}}$ and \hat{K} are complete.

2. Fixed points in $\mathcal{B}(H/K)$ under a finite automorphism group Θ of H

We will henceforth assume that Bruhat-Tits theory is available for H over K.

Let G be a smooth affine K-group and \mathcal{G} be a smooth affine \mathcal{O}-group scheme with generic fiber G. According to [BrT2, 1.7.1-1.7.2] \mathcal{G} is “étalé” and hence by (ET) of [BrT2, 1.7.1] its affine ring has the following description:

$$\mathcal{O}[\mathcal{G}] = \{ f \in K[G] \mid f(\mathcal{G}(\mathcal{O})) \subset \mathcal{O} \}.$$

Let Ω be a nonempty bounded subset of an apartment of $\mathcal{B}(\mathcal{D}(H)/K)$. As the \mathcal{O}-group scheme \mathcal{H}_{Ω} is smooth and affine and its generic fiber is H, the affine ring of \mathcal{H}_{Ω} has thus the following description:

$$\mathcal{O}[\mathcal{H}_{\Omega}] = \{ f \in K[H] \mid f(H(K)^{\Omega}) \subset \mathcal{O} \}.$$

Proposition 2.2. Let Ω be a nonempty bounded subset of an apartment of $\mathcal{B}(\mathcal{D}(H)/K)$. Let \mathcal{H}_{Ω} and $\mathcal{H}_{\Omega}^{\circ}$ be as above. Let G be a smooth connected K-subgroup of H and \mathcal{T} be a smooth affine \mathcal{O}-group scheme with generic fiber G and connected special fiber. Assume that a subgroup \mathcal{S} of $\mathcal{T}(\mathcal{O})$ of finite index fixes Ω pointwise (i.e., $\mathcal{S} \subset H(K)^{\Omega}$). Then there is a \mathcal{O}-group scheme homomorphism $\varphi : \mathcal{G} \to \mathcal{H}_{\Omega}^{\circ}$ that is the natural inclusion $G \hookrightarrow H$ on the generic fibers. So the subgroup $\mathcal{G}(\mathcal{O})$ of $G(K)$ is contained in $\mathcal{H}_{\Omega}^{\circ}(\mathcal{O})$ and hence it fixes Ω pointwise. If F is a facet of $\mathcal{B}(\mathcal{D}(H)/K)$ that meets Ω, then $\mathcal{G}(\mathcal{O})$ fixes F pointwise.

Let S be a K-split torus of H and \mathcal{F} the \mathcal{O}-torus with generic fiber S. If a subgroup of the maximal bounded subgroup $\mathcal{S}(\mathcal{O})$ of $S(K)$ of finite index fixes Ω pointwise, then there is a maximal K-split torus T of H containing S such that Ω is contained in the apartment of $\mathcal{B}(\mathcal{D}(H)/K)$ corresponding to T.

Proof. Since the fibers of the smooth affine group scheme \mathcal{G} are connected and the residue field κ is separably closed, the subgroup \mathcal{S} is Zariski-dense in G, and its image in $\mathcal{G}(\kappa)$ is Zariski-dense in the spacial fiber of \mathcal{G}. Using this observation, we easily see that the affine ring $\mathcal{O}[\mathcal{G}] (\subset K[G])$ of \mathcal{G} has the following description (cf. [BrT2, 1.7.2]):

$$\mathcal{O}[\mathcal{G}] = \{ f \in K[G] \mid f(\mathcal{S}) \subset \mathcal{O} \}.$$

This description of $\mathcal{O}[\mathcal{G}]$ implies at once that the inclusion $\mathcal{S} \hookrightarrow H(K)^{\Omega}$ induces a \mathcal{O}-group scheme homomorphism $\varphi : \mathcal{G} \to \mathcal{H}_{\Omega}^{\circ}$ that is the natural inclusion $G \hookrightarrow H$ on the generic fibers. Since \mathcal{G} has connected fibers, the homomorphism φ factors through $\mathcal{H}_{\Omega}^{\circ}$.

Any facet F of $\mathcal{B}(\mathcal{D}(H)/K)$ that meets Ω is stable under $\mathcal{G}(\mathcal{O}) (\subset H(K))$, so a subgroup of $\mathcal{G}(\mathcal{O})$ of finite index fixes it pointwise. Now applying the result of the preceding paragraph, for F in place of Ω, we see that there is a \mathcal{O}-group scheme homomorphism $\mathcal{G} \to \mathcal{H}_{F}^{\circ}$ that is the natural inclusion $G \hookrightarrow H$ on the generic fibers and hence $\mathcal{G}(\mathcal{O})$ fixes F pointwise.

Now we will prove the last assertion of the proposition. It follows from what we have shown above that there is a \mathcal{O}-group scheme homomorphism $\iota : \mathcal{G} \to \mathcal{H}_{\Omega}^{\circ}$ that is the natural inclusion $S \hookrightarrow H$ on the generic fibers (ι is actually a closed immersion, see [PY2, Lemma 4.1]). Applying [P2, Prop. 2.1(i)] to the centralizer of $\iota(\mathcal{G})$ (in $\mathcal{H}_{\Omega}^{\circ}$) in place of \mathcal{G}, and \mathcal{O} in place of \mathcal{O}, we see that there is a closed \mathcal{O}-torus.
The following is a simple consequence of the preceding proposition.

Corollary 2.3. Let G, S, \mathcal{I}, and \mathcal{I}' be as in the preceding proposition. Then the set of points of $\mathcal{B}(\mathcal{I}(H)/K)$ that are fixed under $\mathcal{I}(\Theta)$ is the union of facets pointwise fixed under $\mathcal{I}(\Theta)$. The set of points of the enlarged building $\mathcal{B}(H/K)$ that are fixed under a finite-index subgroup S of the maximal bounded subgroup $S(K)_b (= \mathcal{I}(\Theta))$ of $S(K)$ is the enlarged Bruhat-Tits building $\mathcal{B}(Z_H(S)/K)$ of the centralizer $Z_H(S)(K)$ of S in $H(K)$.

2.4. Let Θ be a finite group of automorphisms of the reductive K-group H. There is a natural action of Θ on the Bruhat-Tits building $\mathcal{B}(\mathcal{I}(H)/K)$ of $H(K)$ by polysimplicial isometries such that for all $h \in H(K)$, $x \in \mathcal{B}(\mathcal{I}(H)/K)$ and $\theta \in \Theta$, we have $\theta(h \cdot x) = \theta(h) \cdot \theta(x)$.

Let Ω be a nonempty bounded subset of an apartment of $\mathcal{B}(\mathcal{I}(H)/K)$. Assume that Ω is stable under the action of Θ on $\mathcal{B}(\mathcal{I}(H)/K)$. Then $\mathcal{H}_\Omega(\Theta)$ is stable under the action of Θ on $H(K)$, so the affine ring $\mathcal{O}[\mathcal{H}_\Omega]$ is stable under the action of Θ on $K[H]$. This implies that Θ acts on the group scheme \mathcal{H}_Ω by Θ-group scheme automorphisms. The neutral component \mathcal{H}_Ω^0 of \mathcal{H}_Ω is of course stable under this action.

In the following we assume that the characteristic p of the residue field κ does not divide the order of Θ. Then $G := (H^\Theta)^\circ$ is a reductive group, see [Ri, Prop. 10.1.5] or [PY1, Thm. 2.1]. We will prove that Bruhat-Tits theory is available for G over K and the enlarged Bruhat-Tits building of $G(K)$, as a metric space, can be identified with the subspace $\mathcal{B}(H/K)^{\Theta}$ of points of $\mathcal{B}(H/K)$ fixed under Θ.

Let C be the maximal K-split central torus of G and H' be the derived subgroup of the centralizer of C in H. Then H' is a connected semi-simple subgroup of H stable under the group Θ of automorphisms of H; $(H'^\Theta)^\circ (\subset G)$ contains the derived subgroup of G and its central torus is K-anisotropic. Replacing H with H' we assume in the sequel that H is semi-simple and the central torus of G is K-anisotropic (cf. [P2, 3.11, 1.11]).

For a subset X of a set given with an action of Θ, we denote by X^Θ the subset of points of X that are fixed under Θ. We will denote $\mathcal{B}(H/K)^{\Theta}$ by \mathcal{B} in the sequel.

If a facet of $\mathcal{B}(H/K)$ is stable under the action of Θ, then its barycenter is fixed under Θ. Conversely, if a facet F contains a point x fixed under Θ, then being the unique facet containing x, F is stable under the action of Θ.

2.5. We introduce the following partial order “\prec” on the set of nonempty subsets of $\mathcal{B}(H/K)$: Given two nonempty subsets Ω and Ω', $\Omega' \prec \Omega$ if the closure $\overline{\Omega}$ of Ω contains Ω'. If F and F' are facets of $\mathcal{B}(H/K)$, with $F' \prec F$, or equivalently, $\mathcal{H}_{F'}(\Theta) \subset \mathcal{H}_F(\Theta)$, we say that F' is a face of F. In a collection \mathcal{C} of facets, thus a
facet is \textit{maximal} if it is not a proper face of any facet belonging to \(\mathcal{C} \), and a facet is \textit{minimal} if no proper face of it belongs to \(\mathcal{C} \).

Now let \(X \) be a convex subset of \(\mathcal{B}(H/K) \) and \(\mathcal{C} \) be the set of facets of \(\mathcal{B}(H/K) \), or facets lying in a given apartment \(A \), that meet \(X \). Then the following assertions are easy to prove (see Proposition 9.2.5 of [BrT1]): (1) All maximal facets in \(\mathcal{C} \) are of equal dimension and a facet \(F \in \mathcal{C} \) is maximal if and only if \(\dim(F \cap X) \) is maximal. (2) Let \(F \) be a facet lying in an apartment \(A \). Assume that \(F \) is maximal among the facets of \(A \) that meet \(X \), and let \(A_F \) be the affine subspace of \(A \) spanned by \(F \). Then every facet of \(A \) that meets \(X \) is contained in \(A_F \) and \(A \cap X \) is contained in the affine subspace of \(A \) spanned by \(F \cap X \).

The subset \(\mathcal{B} = \mathcal{B}(H/K)^{\Theta} \) of \(\mathcal{B}(H/K) \) is closed and convex. Hence the assertions of the preceding paragraph hold for \(\mathcal{B} \) in place of \(X \). We will show in this section that \(\mathcal{B} \) is an affine building with apartments described below. We begin with the following proposition which has been suggested by Proposition 1.1 of [PY1], and the proof given here is an adaptation of the proof of that proposition.

\textbf{Proposition 2.6.} Let \(A \) be an apartment of \(\mathcal{B}(H/K) \) and \(F \) a facet of \(A \) that meets \(\mathcal{B} \). Let \(\Omega \) be a nonempty bounded subset of the affine subspace \(A_F \) of \(A \) spanned by \(F \). We assume that \(\Omega \) contains \(F \) and is stable under the action of \(\Theta \) on \(\mathcal{B}(H/K) \). Let \(\mathcal{H} := \mathcal{H}_\Omega^\Theta \) be the Bruhat-Tits smooth affine \(\mathcal{O} \)-group scheme with generic fiber \(H \), and connected special fiber \(\mathcal{H}^\text{pred} := \mathcal{H} \big/ \mathcal{R}_u \kappa(\mathcal{H}) \), associated with \(\Omega \). Let \(\mathcal{H}^\text{pred} \) be the maximal pseudo-reductive quotient of \(\mathcal{H} \). Then there exist \(K \)-split tori \(S \subset T \) in \(H \) such that

(i) \(T \) is a maximal \(K \)-split torus of \(H \) and \(\Omega \) is contained in the apartment \(A(T) \) corresponding to \(T \);

(ii) \(S \) is stable under \(\Theta \) and the special fiber of the schematic closure \(\mathcal{I} \) of \(S \) in \(\mathcal{H} \) maps onto the central torus of \(\mathcal{H}^\text{pred} \).

\textbf{Proof.} Let \(\mathcal{I} \) be the set of maximal \(K \)-split tori \(T \) of \(H \) such that \(\Omega \subset A(T) \). Then the automorphism group \(\Theta \) clearly permutes \(\mathcal{I} \), and the subgroup \(\mathcal{P} := \mathcal{H}(\mathcal{O}) \) acts transitively on \(\mathcal{I} \) [P2, Prop. 2.2(i)]. Hence, for every \(T \in \mathcal{I} \), \(\Omega \) is contained in the affine subspace of \(A(T) \) spanned by the facet \(F \).

For \(T \in \mathcal{I} \), let \(S_T \) be the lift of the central torus of \(\mathcal{H}^\text{pred} \) in \(T \). It is clear that the pair \((S, T) \) satisfy (i) and (ii) if \(S \) is \(\Theta \)-stable. We consider \(S := \{ S_T \mid T \in \mathcal{I} \} \); \(\Theta \) acts by permutation on \(S \) and \(\mathcal{P} \) acts transitively on it. We will find an element of \(S \) that is \(\Theta \)-stable. We first prove the following lemma.

\textbf{Lemma 2.7.} Let \(T \in \mathcal{I} \) and \(S := S_T \) be as above. Then

(i) The normalizer of \(S \) in \(\mathcal{P} \) centralizes \(S \).

(ii) \(\mathcal{P} = \mathcal{P}_S \cdot \mathcal{U} \), where \(\mathcal{P}_S \) is the centralizer of \(S \) in \(\mathcal{P} \) and \(\mathcal{U} \) is the kernel of the natural homomorphism \(\mathcal{H}(\mathcal{O}) \to \mathcal{H}^\text{pred}(\kappa) \).
Proof. (i) The affine subspace \(A(T)_F \) of \(A(T) \) spanned by \(F \) is an affine space under the \(\mathbb{R} \)-vector space \(V(S) \). So for any \(x \in F \), \(V(S) + x = A(T)_F \). Now let \(h \) be an element of \(\mathcal{P} \) that normalizes \(S \). Then \(h \) takes \(A(T)_F = V(S) + x (\subset A(T)) \) to \(V(S) + h \cdot x = V(S) + x (\subset A(hTh^{-1})) \) by an affine transformation whose derivative gives the action of \(h \) on \(V(S) \). As \(h \) fixes the open subset \(F \) of \(A(T)_F \) pointwise, its derivative acts trivially on \(V(S) \) and hence \(h \) centralizes \(S \).

(ii) Let \(I \) and \(T \) be the closed \(\Theta \)-tori in \(\mathcal{H} \) with generic fibers \(S \) and \(T \) respectively. Then the centralizer \(\mathcal{H}^I \) of \(I \) in \(\mathcal{H} \) is a smooth affine \(\Theta \)-subgroup scheme [CGP, Prop. A.8.10(2)]. Let \(\mathcal{F} \) be the special fiber of \(I \) and \(\mathcal{H}^\mathcal{F} \) be the centralizer of \(\mathcal{F} \) in the special fiber \(\mathcal{H} \) of \(\mathcal{H} \). Since \(\mathcal{O} \) is Henselian, the natural map \((\mathcal{P}_S =) \mathcal{H}^I(0) \to \mathcal{H}^\mathcal{F}(\kappa) \) is surjective [EGAIV \(1 \) 18.5.17]. As the image of \(\mathcal{F} \) in \(\mathcal{H}^\mathcal{P}_{\text{pred}} \) is central, the natural homomorphism \(\mathcal{H}^\mathcal{F} \to \mathcal{H}^\mathcal{P}_{\text{pred}} \) is surjective (see [Bo, Prop. 9.6]). On the other hand, \(\mathcal{R}_{u,\kappa}(\mathcal{H}) \cap \mathcal{H}^\mathcal{F} = \mathcal{R}_{u,\kappa}(\mathcal{H}^\mathcal{F}) \) ([CGP, Prop. A.8.14]; note that as \(\mathcal{F} \) is a torus, both \(\mathcal{H}^\mathcal{F} \) and \((\mathcal{R}_{u,\kappa}(\mathcal{H}))^\mathcal{F} = \mathcal{R}_{u,\kappa}(\mathcal{H}) \cap \mathcal{H}^\mathcal{F} \) are smooth and connected). So the natural map \(\mathcal{H}^\mathcal{F} / \mathcal{R}_{u,\kappa}(\mathcal{H}^\mathcal{F}) \to \mathcal{H}^\mathcal{P}_{\text{pred}} \) is an isomorphism. Since \(\kappa \) is separably closed, this implies that \(\mathcal{H}^\mathcal{F}(\kappa) \to \mathcal{H}^\mathcal{P}_{\text{pred}}(\kappa) \) is surjective. Hence, the map \(\mathcal{P}_S \to \mathcal{H}^\mathcal{P}_{\text{pred}}(\kappa) \) is surjective too. From this we conclude that \(\mathcal{P} = \mathcal{P}_S \cdot \mathcal{U} \). \(\square \)

We will now complete the proof of Proposition 2.6. As in the preceding lemma, let \(\mathcal{U} \) be the kernel of the natural homomorphism \(\mathcal{H}(\mathcal{O}) \to \mathcal{H}^\mathcal{P}_{\text{pred}}(\kappa) \). Since \(\Omega \) has been assumed to be stable under the action of \(\Theta \) on \(\mathfrak{B}(H/K) \), the group \(\Theta \) acts on \(\mathcal{H} \) by \(\Theta \)-group scheme automorphisms. So \(\mathcal{U} \) is stable under the induced action of \(\Theta \) on \(\mathcal{P} = \mathcal{H}(\mathcal{O}) \). We will now describe a descending \(\Theta \)-stable filtration of the subgroup \(\mathcal{U} \). For a non-negative integer \(i \), let \(\mathcal{U}_i \) be the kernel of the homomorphism \(\mathcal{P} = \mathcal{H}(\mathcal{O}) \to \mathcal{H}(\mathcal{O}/\mathfrak{m}^{i+1}) \). Then each \(\mathcal{U}_i \) is a normal subgroup of \(\mathcal{P} \) and is stable under the action of \(\Theta \) on the latter, \(\mathcal{U}_i \supset \mathcal{U}_{i+1} \), and \(\mathcal{U}_i / \mathcal{U}_{i+1} \) is a \(\kappa \)-vector space for all \(i \geq 0 \) [CGP, Prop. A.5.12]. The quotient \(\mathcal{U} / \mathcal{U}_0 \) is isomorphic to \(\mathcal{R}_{u,\kappa}(\mathcal{H})(\kappa) \). If \(p = 0 \), we consider the ascending filtration of the nilpotent group \(\mathcal{R}_{u,\kappa}(\mathcal{H})(\kappa) \) given by its ascending central series, and if \(p \neq 0 \) we consider the ascending filtration of the unipotent group \(\mathcal{R}_{u,\kappa}(\mathcal{H})(\kappa) \) given by Corollary B.3.3 of [CGP] to obtain an ascending filtration of \(\mathcal{U} / \mathcal{U}_0 \). The inverse image in \(\mathcal{U} \) of this filtration of \(\mathcal{U} / \mathcal{U}_0 \) gives us a descending \(\Theta \)-stable filtration of the nilpotent group \(\mathcal{R}_{u,\kappa}(\mathcal{H})(\kappa) \). For all \(j \geq -n \), \(\mathcal{U}_j \) is a normal subgroup of \(\mathcal{P} \) that is stable under the action of \(\Theta \) on the latter, \(\mathcal{U}_j / \mathcal{U}_{j+1} \) is a commutative group of exponent \(p \) if \(p \neq 0 \), and is a vector space over \(\mathbb{Q} \) if \(p = 0 \). For convenience, we will denote \(\mathcal{U}_j \) by \(\mathcal{U}^{(j+n+1)} \) for all \(j \). Thus we have a decreasing filtration \(\mathcal{U} = \mathcal{U}^{(1)} \supset \mathcal{U}^{(2)} \supset \mathcal{U}^{(3)} \cdots \).

For \(S \in \mathfrak{S} \), let \(\mathcal{Z}^{(j)}_S \) be the centralizer of \(S \) in \(\mathcal{U}^{(j)} \). If for \(\theta \in \Theta \), there exists \(u(\theta) \in \mathcal{U}^{(j)} \) such that \(\theta(S) = u(\theta)^{-1} S u(\theta) \), then \(\mathcal{Z}^{(j)}_S \mathcal{U}^{(j+1)} \) is \(\Theta \)-stable. To
see this, let \(\theta \in \Theta \), and pick \(u(\theta) \in U^{(j)} \) such that \(\theta(S) = u(\theta)^{-1}Su(\theta) \). Then \(\theta(Z^{(j)}_S) = u(\theta)^{-1}Z^{(j)}_SU(\theta) \). So \(\theta(Z^{(j)}_S U^{(j+1)}) = u(\theta)^{-1}Z^{(j)}_SU(\theta)U^{(j+1)} = Z^{(j)}_SU^{(j+1)} \) since \(U^{(j)}/U^{(j+1)} \) is commutative. This shows that \(Z^{(j)}_S U^{(j+1)} \) is \(\Theta \)-stable. Now as \(\Theta \) is a finite group of order prime to \(p \) if \(p \neq 0 \), and \(U^{(j)}/Z^{(j)}_SU^{(j+1)} \) is a commutative divisible group if \(p = 0 \), we conclude that \(H^1(\Theta, U^{(j)}/Z^{(j)}_SU^{(j+1)}) = 0 \) for all \(p \).

Now we fix an \(S_0 \in \mathcal{S} \). Then for \(\theta \in \Theta \), clearly \(\theta(S_0) \in \mathcal{S} \), and since \(\mathcal{P} \) acts transitively on \(\mathcal{S} \), we see using Lemma 2.7(ii) (for \(S_0 \) in place of \(S \)) that \(\theta(S_0) = u_1(\theta)^{-1}S_0u_1(\theta) \) with \(u_1(\theta) \in U^{(1)}(= \mathcal{U}) \). As \(Z^{(1)}_{S_0} \) is the normalizer of \(S_0 \) in \(U^{(1)} \) (Lemma 2.7(i)), we see that \(\theta \mapsto u_1(\theta) \mod Z^{(1)}_{S_0} \) is a 1-cocycle on \(\Theta \) with values in \(U^{(1)}/Z^{(1)}_{S_0} U^{(2)} \), and hence it is a 1-coboundary. This means that there is a \(\theta \in U^{(1)} \) such that \(u_1(\theta) := v_1^{-1}u_1(\theta)\theta(v_1) \in Z^{(1)}_{S_0} U^{(2)} \) for all \(\theta \in \Theta \).

Let \(S_1 = v_1^{-1}S_0v_1 \). Then for \(\theta \in \Theta \), we have \(\theta(S_1) = u_1(\theta)^{-1}S_1u_1(\theta) \). Observe that \(u_1(\theta) \in Z^{(1)}_{S_0} U^{(2)} = v_1 Z^{(1)}_{S_1} v_1^{-1} U^{(2)} = Z^{(1)}_{S_1} U^{(2)} \) as \(U^{(1)}/U^{(2)} \) is commutative. So for each \(\theta \in \Theta \), there is an element \(u_2(\theta) \in U^{(2)} \) such that \(\theta(S_1) = u_2(\theta)^{-1}S_1u_2(\theta) \). Now, as above, using the fact that the normalizer of \(S_1 \) in \(U^{(2)} \) is the centralizer \(Z^{(2)}_{S_1} \), we see that \(\theta \mapsto u_2(\theta) \mod Z^{(2)}_{S_1} \) is a 1-cocycle on \(\Theta \) with values in \(U^{(2)}/Z^{(2)}_{S_1} U^{(3)} \), and hence it is a 1-coboundary. Therefore, there is a \(v_2 \in U^{(2)} \) such that \(u_2(\theta) := v_2^{-1}u_2(\theta)\theta(v_2) \in Z^{(2)}_{S_1} U^{(3)} \) for all \(\theta \in \Theta \).

Repeating the above argument, we construct a sequence \(\{S_i\} \) of tori in \(\mathcal{S} \), and a sequence of elements \(v_i \in U^{(i)} \), such that

\[\bullet \quad S_i = v_i^{-1}S_{i-1}v_i \quad \text{and for each} \quad \theta \in \Theta \), there is an element \(u_{i+1}(\theta) \in U^{(i+1)} \) such that \(\theta(S_i) = u_{i+1}(\theta)^{-1}S_iu_{i+1}(\theta) \), and \(\theta \mapsto u_{i+1}(\theta) \mod Z^{(i+1)}_{S_i} U^{(i+2)} \) is a 1-cocycle on \(\Theta \) with values in \(U^{(i+1)}/Z^{(i+1)}_{S_i} U^{(i+2)} \).

For \(i \geq 1 \), let \(w_i = v_1v_2 \cdots v_i \). Then \(S_i = w_i^{-1}S_0w_i \). Since \(v_j \in U^{(j)} \), and \(\mathcal{O} \) has been assumed to be complete, \(w := \lim_{i \to \infty} w_i \) exists in \(U \). Let \(S = w^{-1}S_0w \). For \(\theta \in \Theta \), as \(\theta(S_i) = u_{i+1}(\theta)^{-1}S_iu_{i+1}(\theta) \), we see that \(u_1(\theta)\theta(w_i)u_{i+1}(\theta)^{-1}w_i^{-1} \) normalizes \(S_0 \). Since the normalizer of \(S_0 \) in \(H(K) \) is closed, taking \(i \to \infty \), we conclude that \(u_1(\theta)\theta(w)w^{-1} \) normalizes \(S_0 \). This implies that \(\theta(S) = S \) for all \(\theta \in \Theta \).

2.8. Let \(x, y \in \mathcal{B} = \mathcal{B}(H/K) \). Let \(F \) be a facet of \(\mathcal{B}(H/K) \) which contains \(x \) in its closure and is maximal among the facets that meet \(\mathcal{B} \), and let \(\Omega = F \cup \{y\} \). Let \(S \subset T \) be a pair of \(K \)-split tori with properties (i) and (ii) of Proposition 2.6, and \(S_G \) and \(T_G \) be the maximal subtori of \(S \) and \(T \) respectively contained in \(G \). Let \(A \) be the apartment of \(\mathcal{B}(H/K) \) corresponding to the maximal \(K \)-split torus \(T \) of \(H \). Then \(A \) contains \(y \) and the closure of \(F \), and so it also contains \(x \). Moreover, \(A \) is an affine space under \(V(T) \), the affine subspace \(V(S) + x \) of \(A \) contains \(F \) and is spanned by it. The affine subspaces \(V(S_G) + x \subset V(T_G) + x \) of \(A \) are clearly
contained in $\mathcal{B} = \mathcal{B}(H/K)^{\Theta}$. As $V(S)^{\Theta} = V(S_G)$ and $F \subset V(S) + x$, we see that F^{Θ} is contained in $V(S_G) + x$. But since the facet F is maximal among the facets that meet \mathcal{B}, $A^{\Theta} (= A \cap \mathcal{B})$ is contained in the affine subspace of A spanned by F^{Θ}. Therefore, $A^{\Theta} = V(S_G) + x$. This implies that $V(S_G) + x = V(T_G) + x$ and hence $S_G = T_G$. We will now show that S_G is a maximal K-split torus of G.

Let S' be a maximal K-split torus of G containing S_G. Then the centralizer $M := Z_H(S')$ of S' in H is stable under Θ. The enlarged Bruhat–Tits building $\mathcal{B}(M/K)$ of $M(K)$ is identified with the union of apartments of $\mathcal{B}(H/K)$ that correspond to maximal K-split tori of M (these are precisely the maximal K-split tori of H that contain S'), cf. [P2, 3.11]. Let z be a point of $\mathcal{B}(M/K)^{\Theta}$ and T' be a maximal K-split torus of M such that the corresponding apartment A' of $\mathcal{B}(M/K)$ contains z. Then $A' = V(T') + z$ and hence $A'^{\Theta} = A' \cap \mathcal{B} = V(T')^{\Theta} + z = V(S') + z$ is an affine subspace of A' of dimension $\dim(S')$. Let F' be a facet of A' that contains the point z in its closure and is maximal among the facets of A' meeting \mathcal{B}. Then A'^{Θ} is contained in the affine subspace of A' spanned by F'^{Θ}, so $\dim(F'^{\Theta}) = \dim(S') \geq \dim(S_G)$. But $\dim(F'^{\Theta}) = \dim(S_G) \geq \dim(F^{\Theta})$. This implies that $\dim(S_G) = \dim(S')$ and hence $S' = S_G$. So S_G is a maximal K-split torus of G.

Thus we have established the following proposition:

Proposition 2.9. Given points $x, y \in \mathcal{B}$, there exists a maximal K-split torus S_G of G, and a maximal K-split torus T of H containing S_G and hence contained in $Z_H(S_G)$, such that the apartment A of $\mathcal{B}(Z_H(S_G)/K)$ corresponding to T contains x and y. Moreover, $A^{\Theta} = A \cap \mathcal{B}$ is the affine subspace $V(S_G) + x$ of A of dimension $\dim(S_G)$.

We will now derive the following proposition which will give us apartments in the Bruhat–Tits building of $G(K)$. In the sequel, we will use S, instead of S_G, to denote a maximal K-split torus of G. As $M := Z_H(S)$ is stable under Θ, the enlarged Bruhat–Tits building $\mathcal{B}(M/K)$ of $M(K)$ contains a Θ-fixed point.

Proposition 2.10. Let S be a maximal K-split torus of G and let T be a maximal K-split torus of H containing S such that the apartment A of $\mathcal{B}(H/K)$ corresponding to T contains a Θ-fixed point x. Then $\mathcal{B}(Z_H(S)/K)^{\Theta} = V(S) + x = A^{\Theta}$. So $\mathcal{B}(Z_H(S)/K)^{\Theta}$ is an affine space under the \mathbb{R}-vector space $V(S)$.

Proof. Let C be the central torus of $Z_H(S)$ and $Z_H(S)'$ the derived subgroup. Then C, $Z_H(S)$ and $Z_H(S)'$ are stable under Θ; $G' := (Z_H(S)^{\Theta})^0$ is anisotropic over K since S is a maximal K-split torus of G, and so also of $(Z_H(S)^{\Theta})^0 (\subset G)$. Now applying Proposition 2.9 to $Z_H(S)'$ in place of H, we see that the Bruhat–Tits building $\mathcal{B}(Z_H(S)'/K)$ of $Z_H(S)'(K)$ contains only one point fixed under Θ. For if $y, z \in \mathcal{B}(Z_H(S)'/K)^{\Theta}$, then there is an apartment A' of $\mathcal{B}(Z_H(S)'/K)$ that contains these points. Moreover, the dimension of the affine subspace A'^{Θ} of A' is 0 as G' is anisotropic over K. Therefore, $y = z$. This proves that $\mathcal{B}(Z_H(S)'/K)^{\Theta}$ consists of a single point. Hence, $\mathcal{B}(Z_H(S)/K)^{\Theta} = V(C)^{\Theta} + x = V(S) + x$, and so it is an affine space under $V(S)$. \qed
2.11. Let S be a maximal K-split torus of G. Let $N := N_G(S)$ and $Z := Z_G(S)$ be respectively the normalizer and the centralizer of S in G. As N (in fact, the normalizer $N_H(S)$ of S in H) normalizes the centralizer $Z_H(S)$ of S in H, there is a natural action of $N(K)$ on $B(Z_H(S)/K)$ and $N(K)$ stabilizes $B(Z_H(S)/K)^\Theta$ under this action. For $n \in N(K)$, the action of n carries an apartment A of $B(Z_H(S)/K)$ to the apartment $n \cdot A$ by an affine transformation.

Now let T be a maximal K-split torus of $Z_H(S)$ such that the corresponding apartment $A := A_T$ of $B(Z_H(S)/K)$ contains a Θ-fixed point x. According to the previous proposition, $B(Z_H(S)/K)^\Theta = V(S) + x = A^\Theta$. So we can view $B(Z_H(S)/K)^\Theta$ as an affine space under $V(S)$. We will now show, using the proof of the lemma in 1.6 of [PY1], that $B(Z_H(S)/K)^\Theta$ has the properties required of an apartment corresponding to the maximal K-split torus S in the Bruhat-Tits building of $G(K)$ if such a building exists. We need to check the following three conditions.

A1: The action of $N(K)$ on $B(Z_H(S)/K)^\Theta = A^\Theta$ is by affine transformations and the maximal bounded subgroup $Z(K)_b$ of $Z(K)$ acts trivially.

Let $\text{Aff}(A^\Theta)$ be the group of affine automorphisms of A^Θ and $\varphi : N(K) \to \text{Aff}(A^\Theta)$ be the action map.

A2: The group $Z(K)$ acts by translations, and the action is characterized by the following formula: for $z \in Z(K)$,

$$\chi(\varphi(z)) = -\omega(\chi(z))$$

for all $\chi \in X_K^*(Z) (\hookrightarrow X_K^*(S))$, here we regard the translation $\varphi(z)$ as an element of $V(S)$.

A3: For $g \in \text{Aff}(A^\Theta)$, denote by $dg \in \text{GL}(V(S))$ the derivative of g. Then the map $N(K) \to \text{GL}(V(S)), n \mapsto dg(n)$, is induced from the action of $N(K)$ on $X_*(S)$ (i.e., it is the Weyl group action).

Moreover, as the central torus of G is K-anisotropic, these three conditions determine the affine structure on $B(Z_H(S)/K)^\Theta$ uniquely; see [T, 1.2].

Proposition 2.12. Conditions A1, A2 and A3 hold.

Proof. The action of $n \in N(K)$ on $B(Z_H(S)/K)$ carries the apartment $A = A_T$ via an affine isomorphism $f(n) : A \to A_{nTn^{-1}}$, to the apartment $A_{nTn^{-1}}$ corresponding to the torus nTn^{-1} containing S. As $(A_{nTn^{-1}})^\Theta = B(Z_H(S)/K)^\Theta = A^\Theta$, we see that $f(n)$ keeps A^Θ stable and so $\varphi(n) := f(n)|_{A^\Theta}$ is an affine automorphism of A^Θ.

The derivative $df(n) : V(T) \to V(nTn^{-1})$ is induced from the map

$$\text{Hom}_K(GL_1, T) = X_*(T) \to X_*(nTn^{-1}) = \text{Hom}_K(GL_1, nTn^{-1}),$$

$\lambda \mapsto \text{Int} n \cdot \lambda$, where $\text{Int} n$ is the inner automorphism of H determined by $n \in N(K) \subset H(K)$. So, the restriction $d\varphi(n) : V(S) \to V(S)$ is induced from the homomorphism $X_*(S) \to X_*(S), \lambda \mapsto \text{Int} n \cdot \lambda$. This proves A3.

Condition A3 implies that $d\varphi$ is trivial on $Z(K)$. Therefore, $Z(K)$ acts by translations. The action of the bounded subgroup $Z(K)_b$ on A^Θ admits a fixed point.
by the fixed point theorem of Bruhat-Tits. Therefore, $Z(K)_b$ acts by the trivial translation. This proves A1.

Since the image of $S(K)$ in $Z(K)/Z(K)_b \simeq \mathbb{Z}^{\dim(S)}$ is a subgroup of finite index, to prove the formula in A2, it suffices to prove it for $z \in S(K)$. But for $z \in S(K)$, $zTz^{-1} = T$, and $f(z)$ is a translation of the apartment A ($\varphi(z)$ is regarded as an element of $V(T)$) which satisfies (see 1.9 of [P2]):

$$\chi(f(z)) = -\omega(\chi(z)) \text{ for all } \chi \in X^*_K(T).$$

This implies the formula in A2, since the restriction map $X^*_K(T) \to X^*_K(S)$ is surjective and the image of the restriction map $X^*_K(Z) \to X^*_K(S)$ is of finite index in $X^*_K(S)$.

2.13. Apartments of \mathcal{B}. By definition, the apartments of \mathcal{B} are the affine spaces $\mathcal{B}(Z_H(S)/K)\Theta$ under the \mathbb{R}-vector space $V(S)$ (of dimension = K-rank G) for maximal K-split tori S of G. For any apartment A of $\mathcal{B}(Z_H(S)/K)$ that contains a Θ-fixed point, $\mathcal{B}(Z_H(S)/K)^\Theta = A^\Theta$ (Proposition 2.10). The subgroup $N_G(S)(K)$ of $G(K)$ acts by affine transformations on the apartment $\mathcal{B}(Z_H(S)/K)^\Theta$ and $Z_G(S)(K)$ acts on it by translations (Proposition 2.12). Conjugacy of maximal K-split tori of G under $G(K)$ implies that this group acts transitively on the set of apartments of \mathcal{B}.

Propositions 2.9 and 2.10 imply the following proposition at once:

Proposition 2.14. Given any two points of \mathcal{B}, there is a maximal K-split torus S of G such that the corresponding apartment of \mathcal{B} contains these two points.

Proposition 2.15. Let A be an apartment of \mathcal{B}. Then there is a unique maximal K-split torus S of G such that $A = \mathcal{B}(Z_H(S)/K)^\Theta$. So the stabilizer of A in $G(K)$ is $N_G(S)(K)$.

Proof. We fix a maximal K-split torus S of G such that $A = \mathcal{B}(Z_H(S)/K)^\Theta$. We will show that S is uniquely determined by A. For this purpose, we observe that the subgroup $N_G(S)(K)$ of $G(K)$ acts on A and the maximal bounded subgroup $Z_G(S)(K)_b$ of $Z_G(S)(K)$ acts trivially (Proposition 2.12). So the subgroup \mathcal{Z} of $G(K)$ consisting of elements that fix A pointwise is a bounded subgroup of $G(K)$, normalized by $N_G(S)(K)$, and it contains $Z_G(S)(K)_b$. Now, using the Bruhat decomposition of $G(K)$ with respect to S, we see that every bounded subgroup of $G(K)$ that is normalized by $N_G(S)(K)$ is a normal subgroup of the latter. Hence the identity component of the Zariski-closure of \mathcal{Z} is $Z_G(S)$. As S is the unique maximal K-split torus of G contained in $Z_G(S)$, both the assertions follow. □

2.16. The affine Weyl group of G. Let $G(K)^+$ denote the (normal) subgroup of $G(K)$ generated by K-rational elements of the unipotent radicals of parabolic K-subgroups of G. Let S be a maximal K-split torus of G, N and Z respectively be the normalizer and centralizer of S in G. Let $N(K)^+ := N(K) \cap G(K)^+$. Then $N(K)^+$ maps onto the Weyl group $W := N(K)/Z(K)$ of G (this can be seen using, for example, [CGP, Prop. C.2.24(i)]).
Let A be the apartment of B corresponding to S. As in 2.11, let $\varphi : N(K) \to \text{Aff}(A)$ be the action map, then the affine Weyl group W_{aff} of G/K is by definition the subgroup $\varphi(N(K)^+)$ of $\text{Aff}(A)$.

3. Bruhat-Tits theory for G over K

3.1. Bruhat-Tits group schemes H^Θ_{Ω}. Let Ω be a nonempty Θ-stable bounded subset of an apartment of $B(H/K)$. Let H^Θ_{Ω} be the smooth affine Θ-group scheme associated to Ω in 2.1. There is a natural action of Θ on H^Θ_{Ω} by Θ-group scheme automorphisms (2.4). Define the functor H^Θ_{Ω} of Θ-fixed points that associates to a commutative Θ-algebra C the subgroup $H^\Theta_{\Omega}(C)$ of H^Θ_{Ω} consisting of elements fixed under Θ. The functor H^Θ_{Ω} is represented by a closed smooth Θ-subgroup scheme of H^Θ_{Ω} (see Propositions 3.1 and 3.4 of [E], or Proposition A.8.10 of [CGP]); we will denote this closed smooth Θ-subgroup scheme also by H^Θ_{Ω}. Its generic fiber is H^Θ, and so the identity component of the generic fiber is G. The neutral component $(H^\Theta_{\Omega})^\circ$ of H^Θ_{Ω} is by definition the union of the identity components of its generic and special fibers; it is an open (so smooth) affine Θ-subgroup scheme [PY2, §3.5] with generic fiber G. The index of the subgroup $(H^\Theta_{\Omega})^\circ(0)$ in $H^\Theta_{\Omega}(0)$ is known to be finite [EGA IV, Cor. 15.6.5]. It is obvious that $(H^\Theta_{\Omega})^\circ = (H^\Theta_{\Omega})^\circ$. We will denote $(H^\Theta_{\Omega})^\circ$ by H_{Ω}° in the sequel and call it the Bruhat-Tits Θ-group scheme associated to G and Ω. The special fiber of H_{Ω}° will be denoted H°_{Ω}. As $H_{\Omega}^\circ(0) \subset H_{\Omega}(0)$, $H^\circ_{\Omega}(0)$ fixes Ω pointwise.

3.2. Let $\Omega' \prec \Omega$ be nonempty bounded subsets of an apartment of $B(H/K)$. We assume that both Ω and Ω' are stable under the action of Θ on $B(H/K)$. The Θ-group scheme homomorphism $H_{\Omega} \to H_{\Omega'}$ of [P2, 1.10] restricts to a homomorphism $\rho_{\Omega, \Omega'} : H_{\Omega} \to H_{\Omega'}$, and by [E, Prop. 3.5], or [CGP, Prop. A.8.10(2)], it induces a Θ-group scheme homomorphism $H_{\Omega}^\Theta \to H_{\Omega'}^\Theta$. The last homomorphism gives a Θ-group scheme homomorphism $\rho_{\Omega, \Omega'} : (H_{\Omega}^\Theta)^\circ = H_{\Omega}^\circ \to H_{\Omega'}^\circ = (H_{\Omega'}^\Theta)^\circ$ that is the identity homomorphism on the generic fiber G.

3.3. Let A be the apartment of B corresponding to a maximal K-split torus S of G and Ω be a nonempty bounded subset of A. The apartment A is contained in an apartment A of $B(H/K)$ that corresponds to a maximal K-split torus T of H containing S and $A = A \cap B = A^\Theta$ (2.13). So Ω is a bounded subset of A. The group scheme H_{Ω} contains a closed split Θ-torus \mathcal{T} with generic fiber T, see [P2, 1.9]. Let \mathcal{J} be the Θ-subtorus of \mathcal{T} whose generic fiber is S (\mathcal{J} is the schematic closure of S in \mathcal{T}). The automorphism group Θ of H_{Ω} acts trivially on the Θ-torus \mathcal{T} (since $S \subset G \subset H^\Theta$) and hence this torus is contained in H_{Ω}°. The special fiber \mathcal{T} of \mathcal{J} is a maximal torus of \mathcal{T} since S is a maximal K-split torus of G.

Proposition 3.4. Let A and A' be apartments of B and Ω a nonempty bounded subset of $A \cap A'$. Then there exists an element $g \in H^\circ_{\Omega}(0)$ that maps A onto A'. Any such element fixes Ω pointwise.
Thus the subgroup P is the maximal K-split tori of G corresponding to the apartments \mathcal{A} and \mathcal{A}' respectively and \mathcal{F} and \mathcal{F}' be the 0-tori of \mathcal{G} with generic fibers S and S' respectively. The special fibers $\overline{\mathcal{F}}$ and $\overline{\mathcal{F}'}$ of \mathcal{F} and \mathcal{F}' are maximal split tori of $\overline{\mathcal{F}}$, and hence according to a result of Borel and Tits there is an element \overline{g} of $\overline{\mathcal{F}}(\kappa)$ which conjugates $\overline{\mathcal{F}}$ onto $\overline{\mathcal{F}'}$ [CGP, Thm. C.2.3]. Now [P2, Prop. 2.1(ii)] implies that there exists a $g \in \mathcal{G}(\mathcal{O})$ lying over \overline{g} that conjugates \mathcal{F} onto \mathcal{F}'. This element fixes Ω pointwise and conjugates S onto S' and hence maps \mathcal{A} onto \mathcal{A}'.

3.5. Given a point $x \in \mathcal{B}$, for simplicity we will denote \mathcal{G}_{x}^Θ, \mathcal{H}_{x}^Θ, \mathcal{H}_{x}^Θ and $\mathcal{H}_{\{x\}}^\Theta$ by \mathcal{G}_{x}^Θ, \mathcal{H}_{x}^Θ, \mathcal{H}_{x}^Θ and $\mathcal{H}_{\{x\}}^\Theta$ respectively, and the special fibers of these group schemes will be denoted by $\overline{\mathcal{G}}_{x}$, $\overline{\mathcal{H}}_{x}$, $\overline{\mathcal{H}}_{x}$ and $\overline{\mathcal{H}}_{\{x\}}$ respectively. The subgroup of $H(K)$ (resp. $G(K)$) consisting of elements that fix x will be denoted by $H(K)^x$ (resp. $G(K)^x$). The subgroup $\mathcal{G}_{x}^\Theta(\mathcal{O}) (\subset G(K)^x)$ is of finite index in $G(K)^x$.

3.6. Parahoric subgroups of $G(K)$. For $x \in \mathcal{B}$, \mathcal{G}_{x}^Θ and $P_x := \mathcal{G}_{x}^\Theta(\mathcal{O})$ will respectively be called the Bruhat-Tits parahoric \mathcal{O}-group scheme and the parahoric subgroup of $G(K)$ associated with the point x. Let S be a maximal K-split torus of G such that x lies in the apartment \mathcal{A} of \mathcal{B} corresponding to S. Then the group scheme \mathcal{G}_{x}^Θ contains a closed split 0-torus \mathcal{F} whose generic fiber is $S(3.3)$. The parahoric subgroups of $G(K)$ are by definition the subgroups P_x for $x \in \mathcal{B}$. For a given parahoric subgroup P_x, the associated Bruhat-Tits parahoric \mathcal{O}-group scheme is \mathcal{G}_{x}^Θ.

(i) Let P be a parahoric subgroup of $G(K)$, \mathcal{G}^Θ the associated Bruhat-Tits parahoric \mathcal{O}-group scheme, $\overline{\mathcal{G}}^\Theta$ the special fiber of \mathcal{G}^Θ, and \mathcal{P} be a subgroup of P of finite index. Then the image of \mathcal{P} in $\overline{\mathcal{G}}^\Theta(\kappa)$ is Zariski-dense in the connected group $\overline{\mathcal{G}}^\Theta$, so the affine ring of \mathcal{G}^Θ is:

$$\mathcal{O}[\mathcal{G}^\Theta] = \{f \in K[G] \mid f(\mathcal{P}) \subset \mathcal{O}\}.$$

Thus the subgroup \mathcal{P} “determines” the group scheme \mathcal{G}^Θ, and hence P is the unique parahoric subgroup of $G(K)$ containing \mathcal{P} as a subgroup of finite index.

(ii) Let P and \mathcal{G}^Θ be as in the preceding paragraph. Let Ω be a nonempty Θ-stable bounded subset of an apartment of $\mathcal{B}(H/K)$ and $\mathcal{G}^\Theta_\Omega$ be as in 3.1. We assume that Ω is fixed pointwise by P. Then the inclusion of P in $H(K)^\Omega (= \mathcal{H}_{\Omega}(\mathcal{O}))$ gives a \mathcal{O}-group scheme homomorphism $\mathcal{G}^\Theta \to \mathcal{H}_{\Omega}^\Theta$ (Proposition 2.2). This homomorphism obviously factors through $\mathcal{G}^\Theta_\Omega$ to give a \mathcal{O}-group scheme homomorphism $\mathcal{G}^\Theta \to \mathcal{G}^\Theta_\Omega$ that is the identity on the generic fiber G.

Suppose $x, y \in \mathcal{B}(H/K)$ are fixed by P, and $[xy]$ is the geodesic joining x and y. Then P fixes every point z of $[xy]$. Let $\mathcal{G}^\Theta_{[xy]}$ be as in 3.1 (for $\Omega = [xy]$). There are \mathcal{O}-group scheme homomorphisms $\mathcal{G}^\Theta \to \mathcal{G}^\Theta_{[xy]}$ and $\mathcal{G}^\Theta \to \mathcal{G}^\Theta_z$ that are the identity on the generic fiber G.

Proof. We will use Proposition 2.1(ii) of [P2], with \mathcal{O} in place of \mathcal{O}, and denote $\mathcal{G}^\Theta_{\Omega}$ by \mathcal{G}, and its special fiber by $\overline{\mathcal{G}}$, in this proof. Let S and S' be the maximal K-split tori of G corresponding to the apartments \mathcal{A} and \mathcal{A}' respectively and \mathcal{F} and \mathcal{F}' be the 0-tori of \mathcal{G} with generic fibers S and S' respectively. The special fibers $\overline{\mathcal{F}}$ and $\overline{\mathcal{F}'}$ of \mathcal{F} and \mathcal{F}' are maximal split tori of $\overline{\mathcal{F}}$, and hence according to a result of Borel and Tits there is an element \overline{g} of $\overline{\mathcal{F}}(\kappa)$ which conjugates $\overline{\mathcal{F}}$ onto $\overline{\mathcal{F}'}$ [CGP, Thm. C.2.3]. Now [P2, Prop. 2.1(ii)] implies that there exists a $g \in \mathcal{G}(\mathcal{O})$ lying over \overline{g} that conjugates \mathcal{F} onto \mathcal{F}'. This element fixes Ω pointwise and conjugates S onto S' and hence maps \mathcal{A} onto \mathcal{A}'.

□
3.7. Polysimplicial structure on B. Let P be a parahoric subgroup of $G(K)$ and \mathcal{O} be the Bruhat-Tits parahoric \mathcal{O}-group scheme associated with P (3.6). Let $B(H/K)^P$ denote the set of points of $B(H/K)$ fixed by P. According to Corollary 2.3, $B(H/K)^P$ is the union of facets pointwise fixed by P. Let $\mathcal{F}_P := B(H/K)^P \cap B$. This closed convex subset is by definition the closed facet of B associated with the parahoric subgroup P. The \mathcal{O}-group scheme \mathcal{O} contains a closed split \mathcal{O}-torus whose generic fiber S is a maximal K-split torus of $G(3.3)$. The subgroup $\mathcal{J}(O)$ (of $S(K)$) is the maximal bounded subgroup of $S(K)$ and it is contained in $P(= \mathcal{O}(O))$, so, according to Corollary 2.3, \mathcal{F}_P is contained in the enlarged building $B(Z_H(S)/K)$ of $Z_H(S)(K)$. This implies that the closed facet \mathcal{F}_P is contained in the apartment $A := B(Z_H(S)/K)^{\Theta} (= B(Z_H(S)/K) \cap B)$ of B corresponding to the maximal K-split torus S of G.

Let \mathcal{F}_P be the subset of points of \mathcal{F}_P that are not fixed by any parahoric subgroup of $G(K)$ larger than P. Then $\mathcal{F}_P = \mathcal{F}_P - \bigcup_{Q \supset P} \mathcal{F}_Q$. Given another parahoric subgroup subgroup Q of $G(K)$, if $\mathcal{F}_Q = \mathcal{F}_P$, then $Q = P$. (To see this, we choose points $x, y \in B$ such that $\mathcal{F}_x^\circ(O) = P$ and $\mathcal{F}_y^\circ(O) = Q$. Then $y \in \mathcal{F}_Q = \mathcal{F}_P$. So P fixes y. Now using 3.6 (ii) we see that $P \subset Q$. We similarly see that $Q \subset P$.) Hence if $Q \supset P$, then \mathcal{F}_Q is properly contained in \mathcal{F}_P. By definition, \mathcal{F}_P is the facet of B associated with the parahoric subgroup P of $G(K)$, and as P varies over the set of parahoric subgroups of $G(K)$, these are are all the facets of B. We will show below (Propositions 3.11 and 3.13) that \mathcal{F}_P is convex and bounded.

For a parahoric subgroup Q of $G(K)$ containing P, obviously, $\mathcal{F}_Q \subset \mathcal{F}_P \subset \mathcal{F}_P$, thus $\mathcal{F}_Q \prec \mathcal{F}_P$ and hence \mathcal{F}_P is a maximal facet if and only if P is a minimal parahoric subgroup of $G(K)$. The maximal facets of B are called the chambers of B. It is easily seen using the observations contained in 2.5 that all the chambers are of equal dimension. We say that a facet \mathcal{F}' of B is a face of a facet \mathcal{F} if $\mathcal{F}' \prec \mathcal{F}$, i.e., if \mathcal{F}' is contained in the closure of \mathcal{F}.

In the following three lemmas (3.8, 3.9 and 3.10), k is any field of characteristic $p \geq 0$. We will use the notation introduced in [CGP, §2.1].

Lemma 3.8. Let \mathcal{K} be a smooth connected affine algebraic k-group and Q be a pseudo-parabolic k-subgroup of \mathcal{K}. Let S be a k-torus of Q whose image in the maximal pseudo-reductive quotient $M := Q/\mathcal{R}_{u,k}(Q)$ of Q contains the maximal central torus of M. Then any 1-parameter subgroup $\lambda : GL_1 \to \mathcal{K}$ such that $Q = P_{\lambda}(\lambda)\mathcal{R}_{u,k}(\mathcal{K})$ has a conjugate under $\mathcal{R}_{u,k}(Q)(k)$ with image in S.

Proof. Let $\lambda : GL_1 \to \mathcal{K}$ be a 1-parameter subgroup such that $Q = P_{\lambda}(\lambda)\mathcal{R}_{u,k}(\mathcal{K})$. The image \mathcal{T} of λ is contained in Q and it maps into the central torus of M. Therefore, \mathcal{T} is contained in the solvable subgroup $S\mathcal{R}_{u,k}(Q)$ of Q. Note that as S is commutative, the derived subgroup of $S\mathcal{R}_{u,k}(Q)$ is contained in $\mathcal{R}_{u,k}(Q)$, so the maximal k-tori of $S\mathcal{R}_{u,k}(Q)$ are conjugate to each other under $\mathcal{R}_{u,k}(Q)(k)$ [Bo, Thm. 19.2]. Hence, there is a $u \in \mathcal{R}_{u,k}(Q)(k)$ such that $u\mathcal{T}u^{-1} \subset S$. Then the image of the 1-parameter subgroup $\mu : GL_1 \to S$, defined as $\mu(t) = u\lambda(t)u^{-1}$, is contained in S.

[Box]
Lemma 3.9. Let H be a smooth connected affine algebraic k-group given with an action by a finite group Θ and U be a smooth connected Θ-stable unipotent normal k-subgroup of H. We assume that p does not divide the order of Θ. Let \bar{S} be a Θ-stable k-torus of $\bar{H} := H/U$. Then there exists a Θ-stable k-torus S in H that maps isomorphically onto \bar{S}. In particular, there exists a Θ-stable k-torus in H that maps isomorphically onto the maximal central torus of \bar{H}.

Proof. Let T be a k-torus of H that maps isomorphically onto $\bar{S}(\subset \bar{H})$. Considering the Θ-stable solvable subgroup TU; using conjugacy under $U(k)$ of maximal k-tori of this solvable group [Bo, Thm. 19.2], we see that for $\theta \in \Theta$, $\theta(T) = u(\theta)^{-1}TU(\theta)$ for some $u(\theta) \in U(k)$. Let $U(k) := U_0 \supset U_1 \supset U_2 \cdots \supset U_n = \{1\}$ be the descending central series of the nilpotent group $U(k)$. Each subgroup U_i is Θ-stable and U_i/U_{i+1} is a commutative p-group if $p \neq 0$, and a \mathbb{Q}-vector space if $p = 0$. Now let $i \leq n$, be the largest integer such that there exists a k-torus S in TU that maps onto \bar{S}, and for every $\theta \in \Theta$, there is a $u(\theta) \in U_i$ such that $\theta(S) = u(\theta)^{-1}SU(\theta)$. Let N_i be the normalizer of S in U_i. Then, for $\theta \in \Theta$, $\theta(N_i) = u(\theta)^{-1}N_iU(\theta)$ and hence as U_i/U_{i+1} is commutative, we see that $\theta(U_i/U_{i+1}) = N_iU_{i+1}$, i.e., N_iU_{i+1} is Θ-stable. It is easy to see that $\theta \mapsto u(\theta)$ mod (N_iU_{i+1}) is a 1-cocycle on Θ with values in U_i/N_iU_{i+1}. But $H^1(\Theta, U_i/N_iU_{i+1})$ is trivial since the finite group Θ is of order prime to p. So there exists $u \in U_i$ such that for all $\theta \in \Theta$, $u^{-1}u(\theta)\theta(u)$ lies in N_iU_{i+1}. Now let $S' = u^{-1}S$. Then the normalizer of S' in U_i is $u^{-1}N_iu$ and again as U_i/U_{i+1} is commutative, $u^{-1}N_iu \cdot U_{i+1} = N_iU_{i+1}$. For $\theta \in \Theta$, we choose $u(\theta) \in U_{i+1}$ such that $u^{-1}u(\theta)\theta(u) \in u^{-1}N_iu \cdot u'(\theta)$. Then $\theta(S') = u'(\theta)^{-1}SU'(\theta)$ for all $\theta \in \Theta$. This contradicts the maximality of i unless $i = n$. \hfill \Box

Lemma 3.10. Let H be a smooth connected affine algebraic k-group given with an action by a finite group Θ. We assume that p does not divide the order of Θ. Let $S = (H^\Theta)^\circ$. Then

(i) $\mathcal{R}_{u,k}(S) = (S \cap \mathcal{R}_{u,k}(H))^\circ = (\mathcal{R}_{u,k}(H)^\Theta)^\circ$; moreover, $S/(S \cap \mathcal{R}_{u,k}(H))$ is pseudo-reductive, and if k is perfect then $S \cap \mathcal{R}_{u,k}(H) = \mathcal{R}_{u,k}(S)$.

(ii) Given a Θ-stable pseudo-parabolic k-subgroup Q of H, $P := S \cap Q$ is a pseudo-parabolic k-subgroup of S, so P is connected and it equals $(S^\Theta)^\circ$.

(iii) Conversely, given a pseudo-parabolic k-subgroup P of S, and a maximal k-torus $S \subset P$, there is a Θ-stable pseudo-parabolic k-subgroup Q of H, Q containing the centralizer $Z_H(S)$ of S in H, such that $P = S \cap Q = (S^\Theta)^\circ$.

Proof. The first assertion of (i) immediately follows from [CGP, Prop. A.8.14(2)]. Now we observe that as $\mathcal{R}_{u,k}(S) = (S \cap \mathcal{R}_{u,k}(H))^\circ$, $(S \cap \mathcal{R}_{u,k}(H))/\mathcal{R}_{u,k}(S)$ is a finite étale (unipotent) normal subgroup of the pseudo-reductive quotient $S/\mathcal{R}_{u,k}(S)$ of S so it is central. Thus the kernel of the quotient map $\pi : S/\mathcal{R}_{u,k}(S) \to S/(S \cap \mathcal{R}_{u,k}(H))$ is an étale unipotent central subgroup. Hence, $S/(S \cap \mathcal{R}_{u,k}(H))$ is pseudo-reductive as $S/\mathcal{R}_{u,k}(S)$ is. Moreover, if k is perfect then every pseudo-reductive k-group is
Proposition 3.11. Let \mathfrak{g} have proved (iii).

Since $\mathfrak{g}_u,k(\mathfrak{g}) \subset \mathfrak{g} \cap \mathfrak{g}_u,k(\mathfrak{k}) \subset \mathfrak{g} \cap \mathfrak{k}$, to prove (ii), we can replace \mathfrak{k} by its pseudo-reductive quotient $\mathfrak{k}/\mathfrak{g}_u,k(\mathfrak{k})$ and assume that \mathfrak{k} is pseudo-reductive. Then \mathfrak{g} is also pseudo-reductive by (i). Let $U = \mathfrak{g}_u,k(\mathfrak{g})$ be the k-unipotent radical of \mathfrak{g}; U is Θ-stable. Let S be a Θ-stable k-torus in \mathfrak{g} that maps isomorphically onto the maximal central torus of the pseudo-reductive quotient $\mathfrak{g} = \mathfrak{g}/U$ (Lemma 3.9). By Lemma 3.8, there exists a 1-parameter subgroup $\lambda : GL_1 \to S$ such that $\lambda = P_3(\lambda)$.

Let $\mu = \sum_{\theta \in \Theta} \theta \cdot \lambda$. Then μ is invariant under Θ and so it is a 1-parameter subgroup of \mathfrak{g}. We will now show that $\mathfrak{g} = P_3(\mu)$. Let Φ (resp. Ψ) be the set of weights in the Lie algebra of \mathfrak{g} (resp. $P_3(\mu)$) with respect to the adjoint action of S. Then since \mathfrak{g}, $P_3(\mu)$ and S are Θ-stable, the subsets Φ and Ψ (of $X(S)$) are stable under the action of Θ on $X(S)$. Hence, for all $a \in \Phi$, as $\langle a, \lambda \rangle \geq 0$, we conclude that $\langle a, \mu \rangle \geq 0$. Therefore, $\Phi \subset \Psi$. On the other hand, for $b \in \Psi$, $\langle b, \mu \rangle > 0$. If $b \in \Psi$ does not belong to Φ, then for $\theta \in \Theta$, $\theta \cdot b \notin \Phi$, so for all $\theta \in \Theta$, $\langle \theta \cdot b, \lambda \rangle < 0$, which implies that $\langle b, \mu \rangle < 0$. This is a contradiction. Therefore, $\Phi = \Psi$ and so $\mathfrak{g} = P_3(\mu)$.

Now observe that $(\mathfrak{g}^\Theta)^\circ \subset \mathfrak{g} \cap \mathfrak{g} \subset \mathfrak{g}^\Theta$. As \mathfrak{g}^Θ is a smooth subgroup ([E, Prop.3.4] or [CGP, Prop. A.8.10(2)]), $\mathfrak{g} \cap \mathfrak{g}$ is a smooth k-subgroup, and since it contains the pseudo-parabolic k-subgroup $P_3(\mu)$, it is a pseudo-parabolic k-subgroup of \mathfrak{g} [CGP, Prop. 3.5.8], hence in particular it is connected. Therefore, $\mathfrak{g} \cap \mathfrak{g} = (\mathfrak{g}^\Theta)^\circ$.

Now we will prove (iii). Let $\lambda : GL_1 \to S$ be a 1-parameter subgroup such that $P = P_3(\lambda)\mathfrak{g}_u,k(\mathfrak{g})$. Then $\mathfrak{g} := P_3(\lambda)\mathfrak{g}_u,k(\mathfrak{k})$ is a pseudo-parabolic k-subgroup of \mathfrak{k} that is Θ-stable (since λ is Θ-invariant) and it contains P as well as $Z_3(S)$. According to (ii), $\mathfrak{g} \cap \mathfrak{g} = (\mathfrak{g}^\Theta)^\circ$ is a pseudo-parabolic k-subgroup of \mathfrak{g} containing P. The Lie algebras of P and $(\mathfrak{g}^\Theta)^\circ$ are clearly equal. This implies that $P = \mathfrak{g} \cap \mathfrak{g} = (\mathfrak{g}^\Theta)^\circ$ and we have proved (iii). \qed

Proposition 3.11. Let P be a parahoric subgroup of $G(K)$ and \mathfrak{T}_P and $\overline{\mathfrak{T}}_P$ be as in 3.7.

(i) Given $x \in \mathfrak{T}_P$ and $y \in \overline{\mathfrak{T}}_P$, for every point z of the geodesic $[xy]$, except possibly for $z = y$, $\mathcal{G}_z(\mathfrak{O}) = P$.

(ii) Let F be a facet of $\mathcal{B}(H/K)$ that meets \mathfrak{T}_P and is maximal among such facets. Then $\mathcal{G}_F(\mathfrak{O}) = P$. Thus $F \cap \mathfrak{B} \subset \mathfrak{T}_P$.

The first assertion of this proposition implies that \mathfrak{T}_P is convex. The second assertion implies that \mathfrak{T}_P is an open-dense subset of $\overline{\mathfrak{T}}_P$, hence the closure of \mathfrak{T}_P is $\overline{\mathfrak{T}}_P$.

Proof. To prove the first assertion, let $[xy]$ be the geodesic joining x and y. Let F_0, F_1, \ldots, F_n be the facets of $\mathcal{B}(H/K)$ containing a segment of positive length of the geodesic $[xy]$ (so each F_i is Θ-stable and is fixed pointwise by P, hence $P \subset \mathcal{G}_{F_i}(\mathfrak{O})$, cf. 3.6(ii)). Then $[xy] \subset \bigcup_i F_i$. We assume the facets $\{F_i\}$ indexed so that x lies in F_0, y lies in F_n, and for each $i < n$, $F_i \cap F_{i+1}$ is nonempty. Let $z_0 = x$. For every
positive integer $i \leq n$, $F_{i-1} \cap F_i$ contains a unique point of $[xy]$; we will denote this point by z_i.

To prove the second assertion of the proposition along with the first, we take x to be a point of \mathcal{B} such that $\mathcal{G}_x^0(\mathcal{O}) = P$ (so $x \in \mathcal{F}_P$) and take y to be any point of $F \cap \mathcal{B}$. Let $[xy]$, and for $i \leq n$, F_i and z_i be as in the preceding paragraph. Then $F_n = F$.

Since $x \in F_0$, there is a \mathcal{O}-group scheme homomorphism $\mathcal{G}_F^0 \to \mathcal{G}_x^0$ that is the identity on the generic fiber G. Thus, $\mathcal{G}_F^0(\mathcal{O}) \subset P$. But $P \subset \mathcal{G}_F^0(\mathcal{O})$, so $\mathcal{G}_F^0(\mathcal{O}) = \mathcal{G}_F^0(\mathcal{O}) = P$. Let $j \leq n$ be a positive integer such that for all $i < j$, $\mathcal{G}_{z_i}^0(\mathcal{O}) = \mathcal{G}_F^0(\mathcal{O}) = P$. The inclusion of $\{z_j\}$ in $F_{j-1} \cap F_j$ gives rise to \mathcal{O}-group scheme homomorphisms $\mathcal{H}_{F_{j-1}} \xrightarrow{\sigma_j} \mathcal{H}_{z_j} \leftarrow \mathcal{H}_F$ that are the identity on the generic fiber H. The images of the induced homomorphisms $\mathcal{H}_{F_{j-1}} \xrightarrow{\pi_j} \mathcal{H}_{z_j} \xrightarrow{\overline{\sigma}_j} \mathcal{H}_F$ are pseudo-parabolic κ_\ast-subgroups of \mathcal{H}_{z_j} ([P2, 1.10(2)]). We conclude by Lie algebra consideration that $\overline{\sigma}_j(\mathcal{H}_{F_{j-1}}) = (\overline{\sigma}_j(\mathcal{H}_{F_{j-1}})^{\Theta})^\circ$ and $\overline{\pi}_j(\mathcal{H}_F) = (\overline{\pi}_j(\mathcal{H}_F)^{\Theta})^\circ$, and Lemma 3.10(ii) implies that both of these subgroups are pseudo-parabolic subgroups of \mathcal{H}_{z_j}. As $\mathcal{G}_{F_{j-1}}^0(\mathcal{O}) = P$, whereas, $P \subset \mathcal{G}_F^0(\mathcal{O}) \subset \mathcal{G}_{z_j}^0(\mathcal{O})$, we see that $\overline{\sigma}_j(\mathcal{H}_{F_{j-1}})$ is contained in $\overline{\pi}_j(\mathcal{H}_F)$. Let \overline{Q} and \overline{Q}' respectively be the images of $\overline{\sigma}_j(\mathcal{H}_{F_{j-1}})$ and $\overline{\pi}_j(\mathcal{H}_F)$ in the maximal pseudo-reductive quotient $\mathcal{G}_{z_j}^\text{pred} := \mathcal{H}_{z_j}^\circ / \mathcal{H}_{u,\kappa_\ast}(\mathcal{H}_{z_j})$ of \mathcal{H}_{z_j}. Then $\overline{Q} \subset \overline{Q}'$, and both of them are pseudo-parabolic subgroups of $\mathcal{G}_{z_j}^\text{pred}$.

Now let S be a maximal K-split torus of G such that the apartment of \mathcal{B} corresponding to S contains the geodesic $[xy]$ and let $v \in V(S)$ so that $v + x = y$. Then for all sufficiently small positive real number ϵ, $-\epsilon v + z_j \in F_{j-1}$ and $\epsilon v + z_j \in F_j$. Using [P2, 1.10(3)] we infer that the images of the pseudo-parabolic subgroups $\overline{\sigma}_j(\mathcal{H}_{F_{j-1}})$ and $\overline{\pi}_j(\mathcal{H}_F)$ of \mathcal{H}_{z_j} in the maximal pseudo-reductive quotient $\overline{\mathcal{H}}_{z_j}^\text{pred} := \mathcal{H}_{z_j}^\circ / \mathcal{H}_{u,\kappa_\ast}(\mathcal{H}_{z_j})$ of \mathcal{H}_{z_j} are opposite pseudo-parabolic subgroups. Therefore, the image \mathcal{H} of $\overline{\sigma}_j(\mathcal{H}_{F_{j-1}}) \cap \overline{\pi}_j(\mathcal{H}_F)$ in $\overline{\mathcal{H}}_{z_j}^\text{pred}$ is pseudo-reductive. Proposition A.8.14(2) of [CGP] implies then that $(\mathcal{H})^{\circ}$ is pseudo-reductive. It is obvious that under the natural homomorphism $\pi : \mathcal{G}_{z_j}^\text{pred} \to \overline{\mathcal{H}}_{z_j}^\text{pred}$, the image of $\overline{Q} = \overline{Q} \cap \overline{Q}'$ is $(\mathcal{H})^{\circ}$. As the kernel of the homomorphism π is a finite (étale unipotent) subgroup (Lemma 3.10(i)), and $(\mathcal{H})^{\circ}$ is pseudo-reductive, we see that \overline{Q} is a pseudo-reductive subgroup of $\mathcal{G}_{z_j}^\text{pred}$. But since \overline{Q} is a pseudo-parabolic subgroup of the latter, we must have $\overline{Q} = \mathcal{G}_{z_j}^\text{pred}$, and hence, $\overline{Q}' = \mathcal{G}_{z_j}^\text{pred}$. So, $\overline{\sigma}_j(\mathcal{H}_{F_{j-1}}) = \mathcal{G}_{z_j}^\circ = \overline{\pi}_j(\mathcal{H}_F)$.

Since the natural homomorphism $\mathcal{G}_{F_{j-1}}^0(\mathcal{O}) \to \overline{\mathcal{H}}_{F_{j-1}}^\ast(\kappa)$ is surjective (as \mathcal{O} is henselian and $\mathcal{G}_{F_{j-1}}^0$ is smooth, [EGA IV, 18.5.17]), and $\overline{\sigma}_j(\mathcal{H}_{F_{j-1}}) = \mathcal{G}_{z_j}^\circ$, the image
of $G^0_{F_{j-1}}(\mathcal{O})$ ($\subset G^0_j(\mathcal{O})$) in $\mathcal{F}^\circ_j(\kappa)$ is Zariski-dense in \mathcal{F}°_j. From this we see that
\[\mathcal{O}[G^0_j] = \{ f \in K[G] \mid f(G^0_{F_{j-1}}(\mathcal{O})) \subset \mathcal{O} \} = \mathcal{O}[G^0_{F_{j-1}}], \]
cf. [BrT2, 1.7.2] and 2.1. Therefore, $\sigma_j|_{G^0_{F_{j-1}}}: G^0_{F_{j-1}} \to G^0_j$ is a \mathcal{O}-group scheme isomorphism. We similarly see that $\rho_j|_{G^0_{F_{j-1}}}: G^0_{F_{j-1}} \to G^0_j$ is a \mathcal{O}-group scheme isomorphism. Now since $G^0_{F_{j-1}}(\mathcal{O}) = P$, we conclude that $P = G^0_j(\mathcal{O}) = G^0_{F_j}(\mathcal{O})$. By induction it follows that $P = G^0_i(\mathcal{O}) = G^0_{F_i}(\mathcal{O})$ for all $i \leq n$. In particular, for all $z \in [xy]$, except possibly for $z = y$, $G^0_z(\mathcal{O}) = P$, and $G^0_{F_0}(\mathcal{O}) = P$. □

For parahoric subgroups P and Q of $G(K)$, if $\mathcal{F}_P \cap \mathcal{F}_Q$ is nonempty, then for any z in this intersection, $P = G^0_z(\mathcal{O}) = Q$ (Proposition 3.11). Thus every point of \mathcal{B} is contained in a unique facet.

We will use the following simple lemma in the proof of the next proposition.

Lemma 3.12. Let S be a maximal K-split torus of G, A the corresponding apartment of \mathcal{B}, and \mathcal{C} be a noncompact closed convex subset of A. Then for any point $x \in \mathcal{C}$, there is an infinite ray originating at x and contained in \mathcal{C}.

Proof. Recall that A is an affine space under the vector space $V(S) = \mathbb{R} \otimes_{\mathbb{Z}} X_*(S)$. We identify A with $V(S)$ using translations by elements in the latter, with x identified with the origin 0, and use a positive definite inner product on $V(S)$ to get a norm on A. With this identification, \mathcal{C} is a closed convex subset of $V(S)$ containing 0. Since \mathcal{C} is noncompact, there exist unit vectors $v_i \in V(S)$, $i \geq 1$, and positive real numbers $s_i \to \infty$ such that $s_i v_i$ lies in \mathcal{C}. After replacing $\{v_i\}$ by a subsequence, we may (and do) assume that the sequence $\{v_i\}$ converges to a unit vector v. We will now show that for every nonnegative real number t, tv lies in \mathcal{C}, and this will prove the lemma. To see that tv lies in \mathcal{C}, it suffices to observe that for a given t, the sequence $\{t v_i\}$ converges to tv, and for all sufficiently large i (so that $s_i \geq t$), tv_i lies in \mathcal{C}. □

Proposition 3.13. For any parahoric subgroup P of $G(K)$, the associated closed facet \mathcal{F}_P of \mathcal{B}, and so also the associated facet $\mathcal{F}_P(\subset \mathcal{F}_P)$, is bounded.

Proof. Let S be a maximal K-split torus of G such that the corresponding apartment of \mathcal{B} contains \mathcal{F}_P (3.7). Assume, if possible, that \mathcal{F}_P is noncompact and fix a point x of \mathcal{F}_P. Then, according to the preceding lemma, there is an infinite ray $\mathcal{R} := \{tv + x \mid t \in \mathbb{R}_{\geq 0}\}$, for some $v \in V(S)$, originating at x and contained in \mathcal{F}_P. It is obvious from Proposition 3.11(i) that this ray is actually contained in \mathcal{F}_P. Hence, for every point $z \in \mathcal{R}$, $G^0_z(\mathcal{O}) = P$.

As the central torus of G has been assumed to be K-anisotropic, there is a non-divisible root a of G, with respect to S, such that $\langle a, v \rangle > 0$. Let S_a be the identity component of the kernel of a and G_a (resp. H_a) be the derived subgroup of the centralizer of S_a in G (resp. H). Fix $t \in \mathbb{R}_{\geq 0}$, and let $y = tv + x \in \mathcal{R}$. Let \mathcal{I} be the closed 1-dimensional \mathcal{O}-split torus of G^0_y whose generic fiber is the maximal K-split torus of G_a contained in S and let $\lambda : GL_1 \to \mathcal{I}$ ($\hookrightarrow G^0_y \hookrightarrow \mathcal{I}_y$) be the \mathcal{O}-isomorphism such that $\langle a, \lambda \rangle > 0$. Let $c = \langle a, v \rangle / \langle a, \lambda \rangle$. Then $\langle a, v - c \lambda \rangle = 0$.

Let \(Y \) be the \(\mathcal{O} \)-subgroup scheme of \(\mathcal{H}_y \) representing the functor
\[
R \rightsquigarrow \{ h \in \mathcal{H}_y(R) \mid \lim_{t \to 0} \lambda(t) h(t)^{-1} = 1 \},
\]
cf. [CGP, Lemma 2.1.5]. Using the last assertion of 2.1.8(3), and the first assertion of 2.1.8(4), of [CGP] (with \(k \), which is an an arbitrary commutative ring in these assertions, replaced by \(\mathcal{O} \), and \(G \) replaced by \(\mathcal{H}_y \)), we see that \(Y \) is a closed smooth unipotent \(\mathcal{O} \)-subgroup scheme of \(\mathcal{H}_y \) with connected fibers; the generic fiber of \(Y \) is \(U_H(\lambda) \), where \(U_H(\lambda) \) is as in [CGP, Lemma 2.1.5] with \(G \) replaced by \(H \). We consider the smooth closed \(\mathcal{O} \)-subgroup scheme \(Y^\Theta \) of \(Y \). As \(Y^\Theta \) is clearly normalized by \(\mathcal{F} \), it has connected fibers, and hence it is contained in \((\mathcal{H}_y^\Theta)^\circ = G_\mathcal{F}^\circ \). The generic fiber of \(Y^\Theta \) is \(U_H(\lambda)^\Theta \) that contains the root group \(U_a(= U_{G_a}(\lambda)) \) of \(G \) corresponding to the root \(a \).

As \(\bigcup_{z \in \mathcal{R}} \mathcal{U}_z(0) \supset U_{H_a}(\lambda) \mathcal{K} \supset U_a(\mathcal{K}) \), we see that \(\bigcup_{z \in \mathcal{R}} \mathcal{U}_z^\Theta(0) \supset U_a(\mathcal{K}) \). Now since \(\mathcal{U}_z^\Theta \supset \mathcal{U}_z^\circ \), we conclude that \(\bigcup_{z \in \mathcal{R}} \mathcal{U}_z^\Theta(0) \supset U_a(\mathcal{K}) \). But for all \(z \in \mathcal{R} \), \(\mathcal{U}_z^\Theta(0) = P \), so the parahoric subgroup \(P \) contains the unbounded subgroup \(U_a(\mathcal{K}) \).

This is a contradiction.

Proposition 3.13 implies that each closed facet of \(\mathcal{B} \) is a compact polyhedron. Considering the facets lying on the boundary of a maximal closed facet of \(\mathcal{B} \), we see that \(\mathcal{B} \) contains facets of every dimension \(\leq K\text{-rank} G \).

3.14. Let \(P \) be a parahoric subgroup of \(G(\mathcal{K}) \) and \(\mathcal{F} := \mathcal{F}_P \) be the facet of \(\mathcal{B} \) associated to \(P \) in 3.7. Then for any \(x \in \mathcal{F} \), since \(P \subset \mathcal{F}_x^\mathcal{O}(0) \subset \mathcal{F}_x^\circ(0) = P \) (3.6(ii)), \(\mathcal{F}_x^\mathcal{O}(0) = P \) and hence the natural \(\mathcal{O} \)-group scheme homomorphism \(\mathcal{F}_x^\mathcal{O} \to \mathcal{F}_x^\circ \) is an isomorphism. In particular, for any facet \(F \) of \(\mathcal{B}(H/\mathcal{K}) \) that meets \(\mathcal{F} \), \(\mathcal{F}_x^\mathcal{O} = \mathcal{F}_x^\circ \).

Proposition 3.15. Let \(\mathcal{F} \) be a facet of \(\mathcal{B} \). Then the \(\kappa \)-unipotent radical \(\mathcal{R}_{a,\kappa}^{}(\mathcal{F}_x^\circ) \) of \(\mathcal{F}_x^\circ \) equals \((\mathcal{F}_x^\circ \cap \mathcal{R}_{a,\kappa}(\mathcal{H}_x^\circ)) \).

Let \(\mathcal{F} \) and \(\mathcal{F}' \) be two facets of \(\mathcal{B} \), with \(\mathcal{F}' \prec \mathcal{F} \). Then:

(i) The kernel of the induced homomorphism \(\mathcal{p}_{\mathcal{F}'}: \mathcal{F}_x^\circ \to \mathcal{F}_x^\circ \) between the special fibers is a smooth unipotent \(\kappa \)-subgroup of \(\mathcal{F}_x^\circ \) and the image \(\mathcal{p}(\mathcal{F}'/\mathcal{F}) \) is a pseudo-parabolic \(\kappa \)-subgroup of \(\mathcal{F}_x^\circ \).

(ii) If \(F \) and \(F' \) are facets of \(\mathcal{B}(H/\mathcal{K}) \), \(F' \prec F \), that meet \(\mathcal{F} \) and \(\mathcal{F}' \) respectively, then \(\mathcal{p}(\mathcal{F}'/\mathcal{F}) = (\mathcal{F}_x^\circ) \), where \(\mathcal{F}_x^\circ \) is the image of \(\mathcal{p}_{F',F}: \mathcal{H}_x^\circ \to \mathcal{H}_x^\circ \).

(iii) The inverse image of the subgroup \(\mathcal{p}(\mathcal{F}'/\mathcal{F})(\kappa) \) of \(\mathcal{F}_x^\circ(\kappa) \), under the natural surjective homomorphism \(\mathcal{F}_x^\circ(\kappa) \to \mathcal{F}_x^\circ(\kappa) \), is \(\rho_{\mathcal{F}',\mathcal{F}}^{}(\mathcal{F}_x^\circ(\kappa)) \subset \mathcal{F}_x^\circ(\kappa) \).

Given a pseudo-parabolic \(\kappa \)-subgroup \(\mathcal{F} \) of \(\mathcal{F}_x^\circ \), there is a facet \(\mathcal{F} \) of \(\mathcal{B} \) with \(\mathcal{F}' \prec \mathcal{F} \) such that the image of the homomorphism \(\mathcal{p}_{\mathcal{F}'}: \mathcal{F}_x^\circ \to \mathcal{F}_x^\circ \) equals \(\mathcal{F} \).

Proof. The first assertion of the proposition follows immediately from Lemma 3.10(i).

To prove (i), we fix \(x \in \mathcal{F} \) and let \(F' \) be the facet of \(\mathcal{B}(H/\mathcal{K}) \) containing \(x \). As the closure of \(\mathcal{F} \) contains \(x \), there is a facet \(F \) of \(\mathcal{B}(H/\mathcal{K}) \) that meets \(\mathcal{F} \) and
contains x in its closure. Then $F' \subset F$, i.e., $F' \prec F$, and F and F' meet \mathcal{F} and \mathcal{F}' respectively. Hence, $\mathcal{G}_{\mathcal{F}} = \mathcal{G}_{F'} = (\mathcal{H}_F^\Theta)^\circ$ and $\mathcal{G}_{\mathcal{F}'} = \mathcal{G}_{F''} = (\mathcal{H}_{F''}^\Theta)^\circ$ (3.14). Now we will prove assertions (i) and (ii) together. The kernel \mathcal{K} of the homomorphism $\overline{p}_{F',F} : \mathcal{H}_F^\Theta \to \mathcal{H}_{F'}^\Theta$ is a smooth unipotent κ-subgroup, and the image \mathcal{V} is a pseudo-parabolic κ-subgroup of $\mathcal{H}_{F'}^\Theta$ [P2, 1.10 (1), (2)]. The pseudo-parabolic subgroup \mathcal{V} is clearly Θ-stable as the facets F and F' are Θ-stable. The kernel of $\overline{p}_{F',F}$ is $\mathcal{H} \cap \mathcal{V}$, and its image is contained in $(\mathcal{V}^\Theta)^\circ$. Therefore, the kernel of $\overline{p}_{F',F}$ contains $(\mathcal{H}^\Theta)^\circ$ and is contained in \mathcal{H}^Θ. As \mathcal{H}^Θ is a smooth subgroup of \mathcal{H}, we see that the kernel of $\overline{p}_{F',F}$ is smooth.

Since the image of the Lie algebra homomorphism $L(\mathcal{F}^\Theta) \to L(\mathcal{V}^\Theta)$ induced by $\overline{p}_{F',F}$ is $L(\mathcal{V})^\Theta$, the containment $p(F' / \mathcal{F}) = \overline{p}_{F',F}(\mathcal{F}) \subset (\mathcal{V}^\Theta)^\circ$ is equality. According to Lemma 3.10(ii), $(\mathcal{V}^\Theta)^\circ$ is a pseudo-parabolic κ-subgroup of \mathcal{V}^Θ.

To prove (iii), let $F' \prec F$ be as in the proof of (i) above and \mathcal{V} be the image of $\overline{p}_{F',F} : \mathcal{H}_F^\Theta \to \mathcal{H}_{F'}^\Theta$. Then, as we saw above, \mathcal{V} is a Θ-stable pseudo-parabolic κ-subgroup of \mathcal{H}_F^Θ and $p(F' / \mathcal{F}) = \overline{p}_{F',F}(\mathcal{F}) = (\mathcal{V}^\Theta)^\circ$. The inverse image of the subgroup $\mathcal{V}(\kappa)$ of $\mathcal{H}_F^\Theta(\kappa)$ under the natural surjective homomorphism $\mathcal{H}_F^\Theta(\Omega) \to \mathcal{H}_F^\Theta(\kappa)$ equals $\rho_{F',F}(\mathcal{H}_F^\Theta(\Omega)) \subset \mathcal{H}_F^\Theta(\kappa)$, see [P2, 1.10 (4)]. Let $\mathcal{G}_F = (\mathcal{H}_F^\Theta)^\Theta$ and $\mathcal{G}_{F'} = (\mathcal{H}_{F'}^\Theta)^\Theta$. We will denote the Θ-group scheme homomorphism $\mathcal{G}_F \to \mathcal{G}_{F'}$ induced by $\rho_{F',F}$ by $\overline{p}_{F',F}$; the corresponding homomorphism $\mathcal{F}_F \to \mathcal{F}_{F'}$ between the special fibers of \mathcal{G}_F and $\mathcal{G}_{F'}$ will be denoted by $\overline{p}_{F',F}$. The neutral components of \mathcal{G}_F and $\mathcal{G}_{F'}$ are \mathcal{G}_F^Θ and $\mathcal{G}_{F'}^\Theta$ respectively (3.14). Let $\mathcal{G}_F^\Theta(\kappa) \subset \mathcal{G}_F(\kappa)$ be the inverse image of \mathcal{G}_F^Θ in \mathcal{G}_F under $\rho_{F',F}$. Since the homomorphism $\rho_{F',F}$ is the identity on the generic fiber H, we infer that $h \in \mathcal{H}_F^\Theta(\Omega)$ is fixed under Θ if and only if $\rho_{F',F}(h)$, and as the generic fiber of both \mathcal{G}_F and $\mathcal{G}_{F'}$ is G, the generic fiber of \mathcal{G}_F^Θ is also G. It is easily seen now that the inverse image of the subgroup $p(F' / \mathcal{F})(\kappa)$ of $\mathcal{H}_F^\Theta(\kappa)$, under the natural surjective homomorphism $\mathcal{G}_F^\Theta(\Omega) \to \mathcal{G}_F^\Theta(\kappa)$, is $\rho_{F',F}(\mathcal{G}_F^\Theta(\Omega))$. We will presently show that the last group equals $\rho_{F',F}(\mathcal{G}_{F'}^\Theta(\Omega))$, this will prove (iii).

\mathcal{G}_F^Θ is the union of its generic fiber G and its special fiber \mathcal{F}_F; and the identity component of \mathcal{F}_F^Θ is clearly \mathcal{F}_F^Θ. We have shown above that the image \mathcal{F} of \mathcal{F}_F^Θ under the homomorphism $\overline{p}_{\mathcal{F}_F^\Theta,F}(\mathcal{F}_F^\Theta(\kappa)) = \mathcal{F}(\kappa)$. So, according to [CGP, Thm. C.2.23], there is a pseudo-parabolic κ-subgroup \mathcal{V} of \mathcal{F}_F^Θ, that contains \mathcal{F}, such that $\overline{p}_{\mathcal{F}_F^\Theta,F}(\mathcal{V}(\kappa)) = \mathcal{F}(\kappa)$. But since κ is infinite, $\mathcal{F}(\kappa)$/ $\mathcal{F}(\kappa)$ is infinite unless $\mathcal{F} = \mathcal{F}$. So we conclude that $\mathcal{F} = \mathcal{V}$, and then $\overline{p}_{F',F}(\mathcal{V}(\kappa)) = \mathcal{F}(\kappa) = \rho_{F',F}(\mathcal{G}_{\mathcal{F}_F^\Theta}(\kappa))$. Now using this, and the fact that the natural homomorphism $\mathcal{G}_{\mathcal{F}_F^\Theta}(\Omega) \to \mathcal{F}_F^\Theta(\kappa)$ is surjective (since Ω is henselian and
\[\mathcal{F} \] is smooth, \([\text{EGA IV}_4,\ 18.5.17]\) and the kernel of this homomorphism equals the kernel of the natural surjective homomorphism \(\mathcal{F}_F(0) \to \mathcal{F}_F(\kappa) \), we see that \(\rho^G_{\mathcal{F},F}(\mathcal{F}_F(0)) = \rho^G_{\mathcal{F},F}(\mathcal{F}_F(0)) \). This proves (iii).

Finally, to prove the last assertion of the proposition, we fix a facet \(F' \) of \(\mathcal{B}(H/K) \) that meets \(\mathcal{F}' \). Then \(\mathcal{F}_F = \mathcal{F}_F' \) (3.14). Using Lemma 3.10(iii) for \(\kappa \) in place of \(k \) and \(\mathcal{F}_F' \) in place of \(\mathcal{F} \), we find a \(\Theta \)-stable pseudo-parabolic \(\kappa \)-subgroup \(\mathcal{D} \) of \(\mathcal{F}_F' \), such that \(\mathcal{F} = (\mathcal{D}^\circ) \circ \). Let \((F' \prec)F \) be the facet of \(\mathcal{B}(H/K) \) corresponding to \(\mathcal{D} \). Then \(F \) is stable under \(\Theta \)-action. As \(F' \prec F \), there is a natural \(\Theta \)-group scheme homomorphism \(\rho_{F',F} : \mathcal{F}_F \to \mathcal{F}_F \), that restricts to a \(\Theta \)-group scheme homomorphism \(\rho^\circ_{F',F} : \mathcal{F}_F \to \mathcal{F}_F' \). Let \(\mathcal{D} \) be the image of the former. Then according to (ii), the image of the latter is \((\mathcal{D}^\circ)\circ = \mathcal{F} \). Let \(P = \mathcal{F}_F(0) \subset \mathcal{F}_F(0) =: \mathcal{Q} \), and \(\mathcal{F} = \mathcal{F}_P \). Then \(P \subset Q \) are parahoric subgroups of \(G(K) \), \(\mathcal{F}' = \mathcal{F}_Q \subset \mathcal{F}_Q \subset \mathcal{F}_P = \mathcal{F} \), thus \(\mathcal{F}' \prec \mathcal{F} \). As \(F \) and \(F' \) meet \(\mathcal{F} \) and \(\mathcal{F}' \) respectively, \(\mathcal{F}_F = \mathcal{F}_F' \) and \(\mathcal{F}_F = \mathcal{F}_F' \) (3.14), and hence the image of the homomorphism \(\rho^G_{\mathcal{F},F} : \mathcal{F}_F \to \mathcal{F}_F' \) equals \(\mathcal{F} \).

Proposition 3.15 and \([\text{CGP}, \text{Propositions 2.2.10 and 3.5.1}]\) imply the following.

(Recall that the residue field \(\kappa \) of \(K \) has been assumed to be separably closed!)

Corollary 3.16. (i) A facet \(\mathcal{F} \) of \(\mathcal{B} \) is a chamber (=maximal facet) if and only if \(\mathcal{F}_\mathcal{F} \) does not contain a proper pseudo-parabolic \(\kappa \)-subgroup. Equivalently, \(\mathcal{F} \) is a chamber if and only if the pseudo-reductive quotient \(\mathcal{G}_\mathcal{F}^{\text{pred}} \) is commutative (this is the case if and only if \(\mathcal{G}_\mathcal{F}^{\text{pred}} \) contains a unique maximal \(\kappa \)-torus, or, equivalently, every torus of this pseudo-reductive group is central).

(ii) The codimension of a facet \(\mathcal{F} \) of \(\mathcal{B} \) equals the \(\kappa \)-rank of the derived subgroup of the pseudo-split pseudo-reductive quotient \(\mathcal{G}_\mathcal{F}^{\text{pred}} := \mathcal{G}_\mathcal{F}^{\text{pred}} / \mathcal{G}_{u,\rho}(\mathcal{F}_\mathcal{F}) \) of \(\mathcal{G}_\mathcal{F}^{\text{pred}} \).

We will now establish the following analogues of Propositions 3.5–3.7 of [P2].

Proposition 3.17. Let \(\mathcal{A} \) be an apartment of \(\mathcal{B} \), and \(\mathcal{C}, \mathcal{C}' \) two chambers in \(\mathcal{A} \). Then there is a gallery joining \(\mathcal{C} \) and \(\mathcal{C}' \) in \(\mathcal{A} \), i.e., there is a finite sequence

\[\mathcal{C} = \mathcal{C}_0, \mathcal{C}_1, \ldots, \mathcal{C}_m = \mathcal{C}' \]

of chambers in \(\mathcal{A} \) such that for \(i \) with \(1 \leq i \leq m \), \(\mathcal{C}_{i-1} \) and \(\mathcal{C}_i \) share a face of codimension 1.

Proof. Let \(\mathcal{A}_2 \) be the codimension 2-skelton of \(\mathcal{A} \), i.e., the union of all facets in \(\mathcal{A} \) of codimension at least 2. Then \(\mathcal{A}_2 \) is a closed subset of \(\mathcal{A} \) of codimension 2, so \(\mathcal{A} - \mathcal{A}_2 \) is a connected open subset of the affine space \(\mathcal{A} \). Hence \(\mathcal{A} - \mathcal{A}_2 \) is arcwise connected. This implies that given points \(x \in \mathcal{C} \) and \(x' \in \mathcal{C}' \), there is a piecewise linear curve in \(\mathcal{A} - \mathcal{A}_2 \) joining \(x \) and \(x' \). Now the chambers in \(\mathcal{A} \) that meet this curve make a gallery joining \(\mathcal{C} \) to \(\mathcal{C}' \). \(\square \)
As the central torus of G is K-anisotropic, the dimension of any apartment, or any chamber, in B is equal to the K-rank of G. A panel in B is by definition a facet of codimension 1.

Proposition 3.18. B is thick, that is any panel is a face of at least three chambers, and every apartment of B is thin, that is any panel lying in an apartment is a face of exactly two chambers of the apartment.

Proof. Let F be a facet of B that is not a chamber, and C be a chamber of which F is a face. Then there is an O-group scheme homomorphism $\rho_{G,F}^C : G_C \rightarrow G_F$ (3.2). The image of G_C in G_F, under the induced homomorphism of special fibers, is a minimal pseudo-parabolic κ-subgroup of G_F, and conversely, any minimal pseudo-parabolic κ-subgroup of the latter determines a chamber of B with F as a face (Corollary 3.16). Now as κ is infinite, G_F contains infinitely many minimal pseudo-parabolic κ-subgroups. We conclude that F is a face of infinitely many chambers.

The second assertion follows at once from the following well-known result in algebraic topology: In any simplicial complex whose geometric realization is a topological manifold without boundary (such as an apartment A of B), any simplex of codimension 1 is a face of exactly two chambers (i.e., maximal dimensional simplices). □

Proposition 3.19. Let A be an apartment of B and S be the maximal K-split torus of G corresponding to this apartment. (Then $A = B(Z_H(S)/K)^\Theta$.) The group $N_G(S)(K)$ acts transitively on the set of chambers of A.

Proof. According to Proposition 3.17, given any two chambers in A, there exists a minimal gallery in A joining these two chambers. So to prove the proposition by induction on the length of a minimal gallery joining two chambers, it suffices to prove that given two different chambers \mathcal{C} and \mathcal{C}' in A which share a panel F, there is an element $n \in N_G(S)(K)$ such that $n \cdot \mathcal{C} = \mathcal{C}'$. Let $\mathcal{G} := G_F$ be the Bruhat-Tits smooth affine O-group scheme associated with the panel F, and $\mathcal{G} \subset \mathcal{G}$ be the closed O-torus with generic fiber S. Let \mathcal{F} be the special fiber of \mathcal{G} and \mathcal{F}' the special fiber of \mathcal{G}'. Then \mathcal{F} is a maximal torus of \mathcal{F}. The chambers \mathcal{C} and \mathcal{C}' correspond to minimal pseudo-parabolic κ-subgroups of \mathcal{F} and \mathcal{F}' of \mathcal{F} (Corollary 3.16). Both of these minimal pseudo-parabolic κ-subgroups contain \mathcal{F} since the chambers \mathcal{C} and \mathcal{C}' lie in A. But then by Theorems C.2.5 and C.2.3 of [CGP], there is an element $\bar{n} \in \mathcal{F}(\kappa)$ that normalizes \mathcal{F} and conjugates \mathcal{F} onto \mathcal{F}'. Now from Proposition 2.1(iii) of [P2] we conclude that there is an element $n \in N_{G}(\mathcal{F})(\kappa)(\mathcal{F})$ lying over \bar{n}. It is clear that n normalizes S and hence it lies in $N_G(S)(K)$; it fixes F pointwise and $n \cdot \mathcal{C} = \mathcal{C}'$. □

Now in view of Propositions 2.14, 3.4, 3.17 and 3.18, Theorem 3.11 of [Ro] (cf. also [P2, 1.8]) implies that B is an affine building if for any maximal K-split torus S of G, $B(Z_H(S)/K)^\Theta$ is taken to be the corresponding apartment, and B is given the polysimplicial structure described in 3.7. Thus we obtain the following:
Theorem 3.20. $\mathcal{B} = \mathcal{B}(H/K)^\Theta$ is an affine building. Its apartments are the affine spaces $\mathcal{B}(Z_H(S)/K)^\Theta$ under $V(S) := \mathbb{R} \otimes_{\mathbb{Z}} X_*(S)$ for maximal K-split tori S of G. Its facets are as in 3.7. The group $G(K)$ acts on \mathcal{B} by polysimplicial isometries.

From Propositions 2.15 and 3.19 we obtain the following.

Proposition 3.21. $G(K)$ acts transitively on the set of ordered pairs (A, C) consisting of an apartment A of \mathcal{B} and a chamber C of A.

Remark 3.22. (i) As in [P2, 3.16], using the preceding proposition we can obtain Tits systems in suitable subgroups of $G(K)$.

(ii) As in [P2, §5], we can obtain filtration of root groups and a valuation of root datum for G/K.

§4. Tamely-ramified descent

We begin by proving the following proposition:

Proposition 4.1. Let k be a field of characteristic $p \geq 0$. Let \mathcal{H} be a noncommutative pseudo-reductive k-group, θ a k-automorphism of \mathcal{H} of finite order not divisible by p, and $\mathfrak{G} := (\mathcal{H}(\theta))^\circ$. Then

(i) No maximal torus of \mathfrak{G} is central in \mathcal{H}.

(ii) The centralizer in \mathcal{H} of any maximal torus of \mathfrak{G} is commutative.

(iii) Given a maximal k-torus \mathfrak{S} of \mathfrak{G}, there is a θ-stable maximal k-torus of \mathcal{H} containing \mathfrak{S}.

(iv) If k is separably closed, then \mathcal{H} contains a θ-stable proper pseudo-parabolic k-subgroup.

Proof. We fix an algebraic closure \bar{k} of k. Let \mathcal{H}' be the maximal reductive quotient of $\mathcal{H}_{\bar{k}}$. As \mathcal{H} is noncommutative, \mathcal{H}' is also noncommutative (see [CGP, Prop. 1.2.3]).

The automorphism θ induces a \bar{k}-automorphism of \mathcal{H}' which we will denote again by θ. According to a theorem of Steinberg [St, Thm. 7.5], $\mathcal{H}_{\bar{k}}$ contains a θ-stable Borel subgroup \mathcal{B}, and this Borel subgroup contains a θ-stable maximal torus \mathfrak{T}. The natural quotient map $\pi : \mathcal{H}_{\bar{k}} \to \mathcal{H}'$ carries \mathfrak{T} isomorphically onto a maximal torus of \mathcal{H}'. We endow the root system of \mathcal{H}' with respect to the maximal torus $\mathfrak{T}' := \pi(\mathfrak{T}) \cap \mathfrak{Z}(\mathcal{H}')$ of the derived subgroup $\mathfrak{D}(\mathcal{H}')$ of \mathcal{H}' with the ordering determined by the Borel subgroup $\pi(\mathcal{B})$. Let a be the sum of all positive roots. Then as $\pi(\mathcal{B})$ is θ-stable, a is fixed under θ acting on the character group $X(\mathfrak{T}')$ of \mathfrak{T}'. Therefore, $X(\mathfrak{T}')$ admits a nontrivial torsion-free quotient on which θ acts trivially. This implies that \mathfrak{T} contains a nontrivial subtorus \mathfrak{F} that is fixed pointwise under θ and is mapped by π into \mathfrak{T}' (\subset $\mathfrak{D}(\mathcal{H}')$). The subtorus \mathfrak{F} is therefore contained in $\mathfrak{G}_{\bar{k}}$. Since the center of the semi-simple group $\mathfrak{D}(\mathcal{H}')$ does not contain a nontrivial smooth connected subgroup, we infer that \mathfrak{F} is not central in $\mathcal{H}_{\bar{k}}$. Thus the subgroup $\mathfrak{G}_{\bar{k}}$ contains a noncentral torus of $\mathcal{H}_{\bar{k}}$. Now by conjugacy of maximal tori in $\mathfrak{G}_{\bar{k}}$, we see that no maximal torus of this group can be central in $\mathcal{H}_{\bar{k}}$. This proves (i).
To prove (ii), let S be a maximal torus of \mathcal{G}. Then the centralizer $Z_{\mathcal{G}}(S)$ of S in \mathcal{G} is a θ-stable pseudo-reductive subgroup of \mathcal{G}, and $(Z_{\mathcal{G}}(S)^{\theta})^\circ = Z_{\mathcal{G}}(S)$. As S is a maximal torus of $Z_{\mathcal{G}}(S)$ that is central in $Z_{\mathcal{G}}(S)$, if $Z_{\mathcal{G}}(S)$ were noncommutative, we could apply (i) to this subgroup in place of \mathcal{G} to get a contradiction.

To prove (iii), we consider the centralizer $Z_{\mathcal{H}}(S)$ of S in \mathcal{H}. This centralizer is θ-stable and commutative according to (ii). The unique maximal k-torus of it contains S and is a θ-stable maximal torus of \mathcal{H}.

To prove (iv), we assume now that k is separably closed and let S be a maximal torus of \mathcal{G}. Then S is k-split, and in view of (i), there is a 1-parameter subgroup $\lambda : \text{GL}_1 \to S$ whose image is not central in \mathcal{H}. Then $P_\mathcal{H}(\lambda)$ is a θ-stable proper pseudo-parabolic k-subgroup of \mathcal{H}.

In the following proposition we will use the notation introduced in §§1, 2. As in 2.4, we will assume that H is semi-simple and the central torus of G is K-anisotropic. We will further assume that H is K-isotropic, Θ is a finite cyclic group of automorphisms of H, and p does not divide the order of Θ.

Proposition 4.2. The Bruhat-Tits building $B(\mathcal{H}/K)$ of $H(K)$ contains a Θ-stable chamber.

Proof. Let F be a Θ-stable facet of $B(\mathcal{H}/K)$ that is maximal among the Θ-stable facets. Let $\mathcal{H} := \mathcal{H}_F^\circ$ be the Bruhat-Tits smooth affine Θ-group scheme with generic fiber H, and connected special fiber \mathcal{H}, corresponding to F. Let $\mathcal{H} := \mathcal{H} / R_{\text{un},\kappa}(\mathcal{H})$ be the maximal pseudo-reductive quotient of \mathcal{H}. In case \mathcal{H} is commutative, \mathcal{H} does not contain a proper pseudo-parabolic κ-subgroup and so F is a chamber of $B(\mathcal{H}/K)$. We assume, if possible, that \mathcal{H} is not commutative. As F is stable under the action of Θ, there is a natural action of this finite cyclic group on \mathcal{H} by Θ-group scheme automorphisms (2.4). This action induces an action of Θ on \mathcal{H}, and so also on its pseudo-reductive quotient \mathcal{H}. Now taking θ to be a generator of Θ, and using the preceding proposition for \mathcal{H}/κ, we conclude that \mathcal{H} contains a Θ-stable proper pseudo-parabolic κ-subgroup. The inverse image P in \mathcal{H} of any such pseudo-parabolic subgroup of \mathcal{H} is a Θ-stable proper pseudo-parabolic κ-subgroup of \mathcal{H}. The facet F' corresponding to P is Θ-stable and $F < F'$. This contradicts the maximality of F. Hence, \mathcal{H} is commutative and F is a chamber. \qed

To prove the next theorem (Theorem 4.4), we will use the following:

Proposition 4.3. Let \mathfrak{K} be a field complete with respect to a discrete valuation and with separably closed residue field. Let \mathfrak{G} be a connected absolutely simple \mathfrak{K}-group of inner type A that splits over a finite tamely-ramified field extension \mathcal{L} of \mathfrak{K}. Then \mathfrak{G} is \mathfrak{K}-split.

Proof. We may (and do) assume that \mathfrak{G} is simply connected. Then \mathfrak{G} is \mathfrak{K}-isomorphic to $\text{SL}_n \mathfrak{D}$, where \mathfrak{D} is a finite dimensional division algebra with center \mathfrak{K} that splits over the finite tamely-ramified field extension \mathcal{L} of \mathfrak{K}. By Propositions 4 and 12 of [S, Ch. II] the degree of \mathfrak{D} is a power of p, where p is the characteristic of the residue
field of \mathfrak{R}. But a noncommutative division algebra of degree a power of p cannot split over a field extension of degree prime to p. So, $\mathfrak{D} = \mathfrak{R}$, hence $\mathfrak{G} \simeq \text{SL}_n$ is \mathfrak{R}-split.

Theorem 4.4. A semi-simple K-group G that is quasi-split over a finite tamely-ramified field extension of K is already quasi-split over K.

This theorem has been proved by Philippe Gille in [Gi] by an entirely different method.

Proof. We assume that all field extensions appearing in this proof are contained in a fixed separable closure of K. To prove the theorem, we may (and do) replace G by its simply-connected central cover and assume that G is simply connected. Let S be a maximal K-split torus of G. Then G is quasi-split over a (separable) extension L of K if and only if the derived subgroup $Z_G(S)'$ of the centralizer $Z_G(S)$ of S is quasi-split over L. Moreover, G is quasi-split over K if and only if $Z_G(S)'$ is trivial. Therefore, to prove the theorem we need to show that any semi-simple simply connected K-anisotropic K-group that is quasi-split over a finite tamely-ramified field extension of K is necessarily trivial. Let G be any such group.

There exists a finite indexing set I, and for each $i \in I$, a finite separable field extension K_i of K and an absolutely almost simple simply connected K_i-anisotropic K_i-group G_i such that $G = \prod_{i \in I} R_{K_i/K}(G_i)$. Now G is quasi-split over a finite separable field extension L of K if and only if for each i, $R_{K_i/K}(G_i)$ is quasi-split over L. But $R_{K_i/K}(G_i)$ is quasi-split over L if and only if G_i is quasi-split over the compositum $L_i := K_i L$. For $i \in I$, the finite extension K_i of K is complete and its residue field is separably closed, and if L is a finite tamely-ramified field extension of K, then L_i is a finite tamely-ramified field extension of K_i. So to prove the theorem, we may (and do) replace K by K_i and G by G_i to assume that G is an absolutely almost simple simply connected K-anisotropic K-group that is quasi-split over a finite tamely-ramified field extension of K. We will show that such a group G is trivial.

Let L be a finite tamely-ramified field extension of K of minimal degree over which G is quasi-split. Since the residue field κ of K is separably closed, L is a cyclic extension of K. Let Θ be the Galois group of L/K. Then Θ is a finite cyclic group of order not divisible by $p (= \text{char}(\kappa))$.

As G_L is quasi-split, Bruhat-Tits theory is available for G over L [BrT2, §4]. The Galois group Θ acts on $G(L)$ by continuous automorphisms and so it acts on the Bruhat-Tits building $\mathcal{B}(G/L)$ of $G(L)$ by polysimplicial isometries. Let $H = R_{L/K}(G_L)$. Then H is quasi-split over K and hence Bruhat-Tits theory is also available for H over K. Let $\mathcal{B}(H/K)$ be the Bruhat-Tits building of $H(K) (= G(L))$. Elements of Θ act by K-automorphisms on H and so on $\mathcal{B}(H/K)$ by polysimplicial isometries; moreover, $G = H^\Theta$. There is a natural Θ-equivariant identification of the building $\mathcal{B}(H/K)$ with the building $\mathcal{B}(G/L)$. (Note that K-rank $H = L$-rank G_L, and there is a natural bijective correspondence between the set of maximal K-split
tori of H and the set of maximal L-split tori of G_L, see [CGP, Prop. A.5.15(2)]. This correspondence will be used below.) The results of §3 imply that Bruhat-Tits theory is available for G over K and $\mathcal{B} := \mathcal{B}(H/K)^\Theta (= \mathcal{B}(G/L)^\Theta)$ is the Bruhat-Tits building of $G(K)$.

Since G is K-anisotropic, the building of $G(K)$ consists of a single point, hence Θ fixes a unique point of $\mathcal{B}(G/L)$. Let C be the facet of $\mathcal{B}(G/L)$ that contains this point. Then C is stable under Θ. According to Proposition 4.2, C is a chamber. Let $\mathcal{H} := \mathcal{H}_C$ be the Bruhat-Tits smooth affine Θ-group scheme associated to C with generic fiber H and connected special fiber $\overline{\mathcal{H}}$. As C is a chamber, the maximal pseudo-reductive quotient $\overline{\mathcal{H}}^{\text{pred}}$ of $\overline{\mathcal{H}}$ is commutative [P2, 1.10].

Now using Proposition 2.6 for $\Omega = C = F$ we obtain a Θ-stable maximal K-split torus T of H such that C lies in the apartment $A(T)$ corresponding to T (and the special fiber of the schematic closure of T in $\overline{\mathcal{H}}$ maps onto the maximal torus of $\overline{\mathcal{H}}^{\text{pred}}$). Let T' be the image of T_L under the natural surjective homomorphism $q : H_L = R_{L/K}(G_L)_L \to G_L$. Then T' is a L-torus of G_L and according to [CGP, Prop. A.5.15(2)] it is the unique maximal L-split torus of G_L such that $R_{L/K}(T')(\subset R_{L/K}(G_L) = H)$ contains the maximal K-split torus T of H.

We identify $H(K)$ with $G(L)$. Then for $x \in H(K) (\subset H(L))$ and $\theta \in \Theta$, we have $q(\theta(x)) = \theta(x)$. Since $T(K)$ is Θ-stable for $t \in T(K)$ and $\theta \in \Theta$, $\theta(t)$ lies in $T'(L)$. Now as $T(K)$ is Zariski-dense in T, its image in $T'(L)$ is Zariski-dense in T'. Since this image is stable under the action of $\Theta = \text{Gal}(L/K)$ on $G(L)$, from the Galois criterion [Bo, Ch. AG, Thm. 14.4(3)] we infer that T' descends to a K-torus of G, i.e., there is a K-torus T of G such that $T' = T_L$. In the natural identification of $\mathcal{B}(H/K)$ with $\mathcal{B}(G/L)$, the apartment $A(T)$ of the former is Θ-equivariantly identified with the apartment $A(T')$ of the latter. We will view the chamber C as a Θ-stable chamber in $A(T')$.

Let Δ be the basis of the affine root system of the absolutely almost simple, simply connected quasi-split L-group G_L with respect to T' ($= T_L$), determined by the Θ-stable chamber C [BrT2, §4]. Then Δ is stable under the action of Θ on the affine root system of G_L with respect to T'. There is a natural Θ-equivariant bijective correspondence between the set of vertices of C and Δ. Since \mathcal{B}, and hence C^{Θ}, consists of a single point, Θ acts transitively on the set of vertices of C so it acts transitively on Δ. Now from the classification of irreducible affine root systems [BrT1, §1.4.6], we see that G_L is a split group of type A_n for some n. Proposition 4.3 implies that G cannot be of inner type A_n over K. On the other hand, if G is of outer type A_n, then over a quadratic Galois extension $K'(\subset L)$ of K it is of inner type. Now, according to Proposition 4.3, G splits over K'. We conclude that $L = K'$ and hence $\#\Theta = 2$. As Θ acts transitively on Δ and $\#\Delta = n + 1$, we infer that $n + 1 = 2$, i.e., $n = 1$, and then G is of inner type, a contradiction. \Box
4.5. Now let k be a field endowed with a nonarchimedean discrete valuation. We assume that the valuation ring of k is Henselian. Let K be the maximal unramified extension of k, and L be a finite tamely-ramified field extension of K with Galois group $\Theta := \text{Gal}(L/K)$. Let G be a connected reductive k-group that is quasi-split over K and $H = R_{L/K}(G_L)$. Then $G = H^\Theta$, and by Theorem 3.20, the Bruhat-Tits building $\mathcal{B}(G/K)$ of $G(K)$ can be identified with the subspace of points in the Bruhat-Tits building of $G(L)$ ($= H(K)$) that are fixed under Θ (with polysimplicial structure on $\mathcal{B}(G/K)$ as in 3.7). Now by “unramified descent” [P2], Bruhat-Tits theory is available for G over k and the Bruhat-Tits building of $G(k)$ is $\mathcal{B}(G/K)^{\text{Gal}(k/K)}$.

References

(Available at http://www.iecl.univ-lorraine.fr/~Guy.Rousseau/Textes/)

University of Michigan
Ann Arbor, MI 48109.
e-mail: gprasad@umich.edu