1. Introduction

In this problem set we will consider polynomials with coefficients in \(K\), where \(K\) is the real numbers \(\mathbb{R}\), the complex numbers \(\mathbb{C}\), the rational numbers \(\mathbb{Q}\) or any other field. (A field is a number system satisfying certain axioms, but if you have not heard about this before, just think of the examples we just mentioned.) A polynomial in the variable \(x\) with coefficients in \(K\) is an expression

\[
f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0
\]

with \(a_0, a_1, a_2, \ldots, a_n \in K\). If \(a_n \neq 0\) then \(f\) is said to have degree \(n\). We may denote this by \(\deg(f(x)) = n\). For convenience, we also define the degree of the zero polynomial \(0\) by \(\deg(0) = -\infty\). The polynomial is called monic if \(a_n = 1\). Now \(K[x]\) denotes the set of all polynomials in the variable \(x\) with coefficients in \(K\).

In many ways, polynomials behave similar to \(\mathbb{Z}\) (this is because \(K[x]\) and \(\mathbb{Z}\) are both so-called principal ideal domains). As for the integers \(\mathbb{Z}\), we can define gcd and lcm for polynomials. There also exists an Euclidean algorithm To prove these results for polynomials, one could simply copy the proofs for the same results for the integers.

Suppose that \(f(x), g(x) \in K[x]\). First, we say that a polynomial \(g\) divides a polynomial \(f\) if \(f(x) = g(x)h(x)\) for some polynomial \(h \in K[x]\). A monic polynomial \(f\) is called irreducible if it has exactly 2 monic divisors (namely 1 and itself).

For example, \(x^2 + 1 \in \mathbb{R}[x]\) is irreducible. Indeed if \(x^2 + 1\) is a product of two polynomials of degree 1, then \(x^2 + 1 = (x + a)(x + b)\) and \(a \in \mathbb{R}\) would be a zero of \(x^2 + 1\) which is impossible. Seen as a polynomial with complex coefficients \(x^2 + 1 \in \mathbb{C}[x]\) is reducible, namely \(x^2 + 1 = (x + i)(x - i)\). The polynomial \(x^2 - 2 \in \mathbb{Q}[x]\) is irreducible by a similar reasoning because \(\sqrt{2}\) is irrational.

These monic irreducible polynomials play the role of prime numbers. For example every monic polynomial is a unique product of monic irreducible polynomials (as we will see).

Sometimes we will also consider polynomials in several variables. For example \(K[x, y]\) denotes the polynomials in \(x\) and \(y\) with coefficients in \(K\). These can be seen as polynomials in \(y\) with coefficients in \(K[x]\), or polynomials in \(x\) with coefficients in \(K[y]\).

2. Division with Remainder

All polynomials considered have coefficients in \(K\). We will develop a theory similar to the theory of integers.

Theorem 1. If \(f(x), g(x)\) are polynomials and \(g(x) \neq 0\), then there are unique polynomials \(q(x)\) and \(r(x)\) such that

\[
f(x) = q(x)g(x) + r(x)
\]

with \(\deg(r(x)) < \deg(g(x))\).
We will call \(q(x)\) the \textit{quotient} and \(r(x)\) the remainder. Theorem 1 can be done explicitly using a long division just like you would do for integers. For example, let us divide \(x^5 + 3x^3 + 2x - 1\) by \(x^2 - x + 2\):

\[
\begin{array}{c|ccccc}
& x^5 & x^4 & x^3 & x^2 & x \\
\hline
x^2 - x + 2 & x^5 & -x^4 & +3x^3 & +2x^2 \\
& x^5 & -x^4 & +2x^3 & \\
\hline
& & & +2x & -1 & \mid x^3 + x^2 + 2x \\
\hline
& & & 2x^3 & -2x^2 & +2x \\
& & & 2x^3 & -2x^2 & +4x \\
\hline
& & & & -2x & -1
\end{array}
\]

Therefore the quotient is \(x^3 + x^2 + 2x\) and the remainder is \(-2x - 1\) (You may have learned the long division slightly different. For example, it is a cultural thing where you put the quotient. Also, the horizontal bars weren’t meant to be quite this long but I didn’t figure it out how to do this in \TeX{} properly.)

Theorem 2. Suppose that \(f(x), g(x)\) are nonzero polynomials, and let \(h(x)\) be a nonzero monic polynomial of smallest degree such that both \(f(x)\) and \(g(x)\) divide \(h(x)\). This polynomial \(h(x)\) is unique and we call it \(\text{lcm}(f(x), g(x))\). Moreover if \(u(x)\) is any common multiple of \(f(x)\) and \(g(x)\) then \(\text{lcm}(f(x), g(x))\) divides \(u(x)\).

Proof. If \(u(x)\) is a common multiple of \(f(x)\) and \(g(x)\) then we can write \(u(x) = q(x)h(x) + r(x)\) with \(\deg(r(x)) < \deg(h(x))\) and \(r(x)\) is a common multiple of \(f(x)\) and \(g(x)\). Now \(r(x)\) cannot be nonzero by minimality of \(\deg(h(x))\). Therefore \(r(x) = 0\) and \(h(x)\) divides \(u(x)\). We now prove uniqueness of \(h(x)\). If \(v(x)\) were another nonzero monic polynomial with minimal degree such that \(f(x)\) and \(g(x)\) divide \(v(x)\), then \(h(x)\) must divide \(v(x)\) and \(v(x)\) must divide \(h(x)\). Since both polynomials are monic, we get \(h(x) = v(x)\).

Theorem 3. If \(f(x), g(x)\) are nonzero polynomials, then there is a nonzero monic polynomial \(h(x)\) of largest degree such that \(h(x)\) divides both \(f(x)\) and \(g(x)\). The polynomial \(h(x)\) is unique and we call it \(\text{gcd}(f(x), g(x))\). Moreover, if \(u(x)\) is any polynomial dividing both \(f(x)\) and \(g(x)\) then \(u(x)\) divides \(\text{gcd}(f(x), g(x))\).

Proof. Define \(h(x)\) as a nonzero polynomial of smallest possible degree such that it is of the form

\[a(x)f(x) + b(x)g(x)\]

for some polynomials \(a(x)\) and \(b(x)\). We may assume that \(h(x)\) is monic by multiplying with a constant. Using division with remainder, we find \(q(x)\) and \(r(x)\) such that

\[f(x) = q(x)h(x) + r(x)\]

with \(\deg(r(x)) < \deg(h(x))\). Now

\[r(x) = f(x) - q(x)(a(x)f(x) + b(x)g(x)) = (1 - q(x)a(x))f(x) + (-q(x)b(x))g(x).\]

Because of the minimality of the degree of \(h(x)\), we must have \(r(x) = 0\). This shows that \(h(x)\) divides \(f(x)\). In a similar way one can prove that \(h(x)\) divides \(g(x)\). If \(u(x)\) is any polynomial dividing both \(f(x)\) and \(g(x)\) then \(u(x)\) also divides \(h(x) = a(x)f(x) + b(x)g(x)\). This also shows immediately that \(h(x)\) is a common divisor of \(f(x)\) and \(g(x)\) of largest possible degree. If \(u(x)\) is another monic common divisor of \(f(x)\) and \(g(x)\) then \(u(x)\) divides \(h(x)\) and since both are monic of the same degree we get \(u(x) = h(x)\). This shows the uniqueness.
The previous proof shows in particular that for nonzero polynomials \(f(x) \) and \(g(x) \), there always exists polynomials \(a(x) \) and \(b(x) \) such that

\[
gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x).
\]

One could also define \(\text{lcm}(f(x), 0) = \text{lcm}(0, f(x)) = 0 \) and \(\gcd(f(x), 0) = \gcd(0, f(x)) = f(x) \) for any polynomial \(f(x) \).

3. Euclid’s Algorithm

We can also compute the greatest common divisor of two nonzero polynomials \(f(x) \) and \(g(x) \) using the Euclidean algorithm. Let us assume that \(\deg(f(x)) \geq \deg(g(x)) \). Put \(r_0(x) = f(x) \) and \(r_1(x) = f(x) \). If \(r_i(x) \neq 0 \) then we define \(r_{i+1}(x) \) and \(q_i(x) \) inductively by

\[
r_{i-1}(x) = q_i(x)r_i(x) + r_{i+1}(x)
\]

where \(q_i(x), r_{i+1}(x) \in K[x] \) and \(\deg(r_{i+1}(x)) < \deg(r_i(x)) \). Since \(\deg(r_0(x)) > \deg(r_1(x)) > \cdots \) we must have \(r_{k+1}(x) = 0 \) for some \(k \). So we have

\[
\begin{align*}
r_0(x) &= q_1(x)r_1(x) + r_2(x) \\
r_1(x) &= q_2(x)r_2(x) + r_3(x) \\
& \quad \vdots \\
r_{k-2}(x) &= q_{k-1}(x)r_{k-1}(x) + r_k(x) \\
r_{k-1}(x) &= q_k(x)r_k(x)
\end{align*}
\]

Up to a constant \(r_k(x) \) is equal to \(\gcd(f(x), g(x)) \). All proofs are similar to the GCD algorithm for integers.

4. Chinese Remainder Theorem

Definition 4. If \(a(x), b(x), f(x) \in K[x] \) are polynomials then we write

\[
a(x) \equiv b(x) \mod f(x)
\]

if \(f(x) \) divides the \(a(x) - b(x) \).

We now can formulate a Chinese Remainder Theorem for polynomials.

Theorem 5 (Chinese Remainder Theorem). If \(f(x) \) and \(g(x) \) are polynomials with \(\gcd(f(x), g(x)) = 1 \) and \(a(x), b(x) \in K[x] \) are polynomials, then there exists a polynomial \(c(x) \in K[x] \) with \(\deg(c(x)) < \deg(f(x)) + \deg(g(x)) \) such that

\[
c(x) \equiv a(x) \mod f(x)
\]

and

\[
c(x) \equiv b(x) \mod g(x)
\]

5. Unique Factorization

Just as for the unique factorization into prime numbers, every polynomial has a unique factorization into irreducible polynomials.

Theorem 6. Every monic polynomial in \(K[x] \) can be uniquely (up to permutation) written as a product of monic irreducible polynomials.
6. The Fundamental Theorem of Algebra

Theorem 7 (Fundamental Theorem of Algebra). If \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0 \) is a polynomial with complex coefficients \(a_0, a_1, \ldots, a_{n-1} \), then

\[
P(z) = (z - x_1)(z - x_2) \cdots (z - x_n)
\]

for some complex numbers \(x_1, x_2, \ldots, x_n \). Here \(x_1, x_2, \ldots, x_n \) are exactly the zeroes of \(P(z) \), (some zeroes may appear several times, we call them multiple zeroes).

The fundamental theorem of algebra implies that the only irreducible monic polynomials over the complex numbers are of the form \(z - a \), with \(a \in \mathbb{C} \).

Corollary 8. If \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0 \) is a polynomial with real coefficients \(a_0, a_1, \ldots, a_{n-1} \), then we can write

\[
P(z) = Q_1(z)Q_2(z) \cdots Q_r(z)
\]

where \(Q_i(z) \) is a monic polynomial of degree 1 or 2 for every \(i \).

Proof. It suffices to show that irreducible polynomials over \(\mathbb{R} \) have degree 1 or 2. Suppose that \(P(z) \) is an monic irreducible noncosntant polynomial. According the the previous theorem, there exists a complex root \(a \in \mathbb{C} \). If \(a \) is real, then \(P(z) \) is divisible by \(z - a \) and we must have \(P(z) = z - a \) because \(P(z) \) is irreducible. If \(a \) is not real, then \(P(\overline{a}) = 0 \) as well, where \(\overline{a} \) is the complex conjugate of \(a \). Let \(Q(z) = (z - a)(z - \overline{a}) = z^2 - (a + \overline{a})z + a\overline{a} \). The polynomial \(Q(z) \) divides \(P(z) \) and \(Q(z) \) has real coefficients. Because \(P(z) \) is irreducible, we have that \(P(z) = Q(z) \), \(\square \)

Suppose that \(P(z) \) is a monic polynomial of degree \(n \) with zeroes \(x_1, x_2, \cdots, x_n \). Then we have

\[
P(z) = (z - x_1)(z - x_2) \cdots (z - x_n).
\]

If we multiply this out we get

\[
P(z) = z^n - e_1z^{n-1} + e_2z^{n-2} - \cdots + (-1)^ne_n
\]

where

\[
e_k = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} x_{i_1}x_{i_2} \cdots x_{i_k}
\]

are called the elementary symmetric polynomials. In particular we have

\[
e_1 = x_1 + x_2 + \cdots + x_n
\]

which is the sum of all zeroes,

\[
e_2 = x_1x_2 + x_1x_3 + \cdots + x_1x_n + x_2x_3 + x_2x_4 + \cdots + x_2x_n + \cdots + x_{n-1}x_n
\]

which is the sum of all products of distinct variables, and

\[
e_n = x_1x_2 \cdots x_n
\]

which is just the product of all variables. You probably know the case \(n = 2 \). In that case we get \(P(z) = (z - x_1)(z - x_2) = z^2 - (x_1 + x_2)z + x_1x_2 \), so \(s_1 = x_1 + x_2 \) and \(s_2 = x_1x_2 \).

A polynomial \(Q(x_1, x_2, \ldots, x_n) \) in the variables \(x_1, x_2, \ldots, x_n \) is called symmetric if

\[
Q(x_1, \ldots, x_n) = Q(x_{\sigma(1)}, \ldots, x_{\sigma(n)})
\]
Exercise 1. ** Show that
\[p_{n+k} - e_1p_{n+k-1} + e_2p_{n+k-2} - \cdots + (-1)^n e_n p_k = 0. \]

Exercise 2. * Show that \(e_2 = (p_1^2 - p_2)/2, \) and \(e_3 = (p_1^3 - 3p_1p_2 + 2p_3)/6. \)

Exercise 3. ** Suppose that \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \) is a polynomial with \(n \) distinct real zeroes, \(x_1, x_2, \cdots, x_n. \) Express
\[\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n} \]
in terms of \(a_0, a_1, \ldots, a_{n-1}. \)

Exercise 4. *** Suppose that \(x_1, x_2, x_3 \) are complex numbers with
\[x_1 + x_2 + x_3 = x_1^2 + x_2^2 + x_3^2 = x_1^3 + x_2^3 + x_3^3 = 10. \]
What is \(x_1^4 + x_2^4 + x_3^4? \)

Exercise 5. **** Suppose that \(|z| < 1. \) Show that
\[\prod_{n=1}^{\infty} \frac{1}{1 - z^{2n-1}} = \prod_{n=1}^{\infty} (1 + z^n). \]

Exercise 6. *** A polynomial \(P(z) \) with real coefficients of degree \(n \) starts with
\[az^n + bz^{n-1} + cz^{n-2} + \cdots \]
Show that if \(P(z) \) cannot have \(n \) real zeroes if \(b^2 - 2ac < 0. \) Also show that there exists a polynomial \(P(z) \) with \(n \) real zeroes for which \(b^2 - 4ac < 0. \)

Exercise 7. (Polya’s Theorem)**** If \(P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \) is a polynomial with real coefficients, such that \(P(z) > 0 \) for \(z > 0. \) Prove that \((1 + z)^n P(z) \) has nonnegative coefficients. (For example, \(1 - 3z + 3z^2 > 0 \) for all \(z > 0, \) and
\[(1 + z)^3(1 - 3z + 3z^2) = 1 + 10z + 42z^2 + 91z^3 + 91z^4 + \]
\[+1287z^5 + 429z^7 + 2002z^9 + 2002z^{10} + 1365z^{11} + 637z^{12} + 196z^{13} + 36z^{14} + 3z^{15} \]
has nonnegative coefficients. By the way, 13 was the smallest power with this property here.

Exercise 8. *** A polynomial \(P(z) \) with real coefficients of degree \(n \) starts with
\[az^n + bz^{n-1} + cz^{n-2} + \cdots \]
Show that if \(P(z) \) cannot have \(n \) real zeroes if \(b^2 - 2ac < 0. \) Also show that there exists a polynomial \(P(z) \) with \(n \) real zeroes for which \(b^2 - 4ac < 0. \)

Exercise 9. * A polynomial \(P(z) = a_nz^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0 \) is called symmetric if \(a_i = a_{n-i} \) for all \(i. \) (Assume that \(a_n \neq 0. \)) Prove that for a symmetric polynomial \(P(z) \) we have that \(x \) is a zero of \(P(z) \) if and only if \(1/x \) is a zero of \(P(z). \)
Exercise 10. ** Find all zeroes of the (symmetric) polynomial
\[P(z) = z^4 + 10z^3 + 23z^2 + 10z + 1. \]

Exercise 11. **
(a) Prove Theorem 1 (for example by induction with respect to \(\deg(f(x)) \)).
(b) Suppose that \(f(x) \) is a polynomial with coefficients in \(K \) and \(f(a) = 0 \) for some \(a \in K \).
Prove that you can write \(f(x) = (x - a)q(x) \) for some polynomial \(q(x) \in K[x] \).
(c) Use this to show that a nonzero polynomial of degree \(n \) has at most \(n \) zeroes.

Exercise 12. *** Find all polynomials (with real coefficients) \(f(x) \) such that
\[f(x^2) = (f(x))^2. \]

Exercise 13. ** If \(f(x) \) is a polynomial, prove that we can write
\[f(x) - f(y) = a(x, y)(x - y) \]
where \(a(x, y) \) is a polynomial in two variables.

Exercise 14. * Suppose that \(f(x) \) is a polynomial with integer coefficients, and that \(a, b \)
are integers. Show that \(f(a) - f(b) \) is divisible by \(a - b \). In particular, if \(a \equiv b \mod n \) for
some integer \(n \), then \(f(a) \equiv f(b) \mod n \).

Exercise 15. *** Let \(P(x) \) be a polynomial with integer coefficients. Prove: There do not
exist three distinct integers \(a, b, c \) such that \(P(a) = b, P(b) = c \) and \(P(c) = a \).

Exercise 16. *** Find a polynomial \(P(x, y, z, t) \) (with real coefficients) such that \(P(2, 0, 0, 1) = 2001 \), but \(P(a, b, c, d) = 0 \) for all other quadruples of integers with \(0 \leq a, b, c, d \leq 9 \).

Exercise 17. ***
(a) Prove the identity
\[\cos(nx) = 2 \cos(x) \cos((n - 1)x) - \cos((n - 2)x) \]
for natural numbers \(n \) and \(x \in \mathbb{R} \).
(b) Prove that for every natural number \(n \) there exists a polynomial \(T_n(x) \) of degree \(n \) such that \(T_n(\cos(x)) = \cos(nx) \). (These polynomials \(T_n(x) \) are called Chebychev Polynomials).
(c) Prove that \(|T_n(x)| \leq 1 \) for \(|x| \leq 1 \) and that the leading coefficient of \(T_n(x) \) is \(2^{n-1} \) (i.e., \(T_n(x) = 2^{n-1}x^n + \ldots \)).

Exercise 18. ***** Suppose that \(P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0 \) is a polynomial of
degree \(n \) and \(|P(x)| \leq 1 \) for \(|x| \leq 1 \). Prove that \(|a_n| \leq 2^{n-1} \).

Exercise 19. ***** Suppose
\[f(x) - f(y) = a(x, y)(g(x) - g(y)) \]
for some polynomials \(f(x) \) and \(g(x) \) and a polynomial \(a(x, y) \) in two variables. Prove that
there exists a polynomial \(h \) such that \(f(x) = h(g(x)) \).
Exercise 20 (Putnam 1986, A6). ***** Let \(a_1, a_2, \ldots, a_n\) be real numbers, and let \(b_1, b_2, \ldots, b_n\) be distinct positive integers. Suppose that there is a polynomial \(f(x)\) satisfying the identity
\[
(1 - x)^n f(x) = 1 + \sum_{i=1}^{n} a_i x^{b_i}.
\]
Find a simple expression (not involving any sums) for \(f(1)\) in terms of \(b_1, b_2, \ldots, b_n\) and \(n\) (but independent of \(a_1, a_2, \ldots, a_n\)).

Exercise 21 (Putnam). ***** Let \(f(x)\) be a polynomial with integer coefficients. Define a sequence \(a_0, a_1, \ldots\) of integers such that \(a_0 = 0\) and \(a_{n+1} = f(a_n)\) for all \(n \geq 0\). Prove that if there exists a positive integer \(m\) for which \(a_m = 0\), then either \(a_1 = 0\) or \(a_2 = 0\).

Exercise 22. ***** (Gauss' Lemma)

1. If \(f(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0\) is a polynomial with integer coefficients, then the content \(c(f(x))\) of \(f(x)\) is defined as \(\gcd(a_n, a_{n-1}, \ldots, a_0)\). Prove that \(c(f(x)g(x)) = c(f(x))c(g(x))\) if \(f(x)\) and \(g(x)\) are polynomials with integer coefficients.

2. If \(f(x)\) is a polynomial with integer coefficients and \(f(x) = a(x)b(x)\) with \(a(x)\) and \(b(x)\) nonconstant polynomials with rational coefficients, then one can find polynomials \(\tilde{a}(x)\) and \(\tilde{b}(x)\) with integer coefficients such that \(f(x) = \tilde{a}(x)\tilde{b}(x)\). (In other words, \(f(x)\) is reducible over \(\mathbb{Q}\) if and only if \(f(x)\) is reducible of \(\mathbb{Z}\)).

Exercise 23. *** (Interpolation) Suppose that \(a_1, a_2, \ldots, a_n \in \mathbb{R}\) are distinct and that \(b_1, b_2, \ldots, b_n \in \mathbb{R}\). Prove that there exists a polynomial \(f(x)\) with real coefficients such that \(f(a_i) = b_i\) and \(f\) has degree at most \(n - 1\).

Exercise 24. ***** Prove the Eisenstein criterion. If \(f(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0\) is a polynomial with integer coefficients, and \(p\) is a prime number such that \(p\) divides \(a_1, a_2, \ldots, a_{n-1}\), \(p\) does not divide \(a_0\) and \(p^2\) does not divide \(a_0\). Then \(f(x)\) is irreducible over \(\mathbb{Q}\) (it suffices to show, using the previous problem, that it is impossible to write \(f(x)\) as a product of two nonconstant polynomials with integer coefficients).

Exercise 25 (Putnam 1985, B2). *** Let \(k\) be the smallest positive integer for which there exist distinct integers \(m_1, m_2, m_3, m_4, m_5\) such that the polynomial
\[
p(x) = (x - m_1)(x - m_2)(x - m_3)(x - m_4)(x - m_5)
\]
has exactly \(k\) nonzero coefficients. Find, with proof, a set of integers \(m_1, m_2, m_3, m_4, m_5\) for which this minimum \(k\) is achieved.

Exercise 26 (Putnam 1985, A4). **** Define a sequence \(\{a_i\}\) by \(a_1 = 3\) and \(a_{i+1} = 3a_i\) for \(i \geq 1\). Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many \(a_i\)?

Exercise 27. * What are the quotient and the remainder of division of \(x^7 + x^5 - x^4 + 2x^3 + 4x^2 - 1\) by \(x^3 + x^2 - x + 1\)?