Inverse degrees and the Jacobian conjecture

Harm Derksen
Mathematisches Institut
Universität Basel
Rheinsprung 21
CH-4051 BASEL
Switzerland
E-mail: hderksen@math.unibas.ch
(old address replaced)

Abstract

Bass, Connell and Wright proved that if the Jacobian Conjecture is true, then there exists a number $C(d)$ such that for every k-algebra A and every invertible polynomial map $F : A^n \to A^n$ with $\det(J(F)) = 1$ the degree of F^{-1} is bounded by $C(d)$. A year later Bass proved the converse. In this paper we give a short proof of this last result.

In this paper k is a field of characteristic 0. If $F = (F_1, \ldots, F_n) : k^n \to k^n$ is a polynomial map, then we define the degree of F as the maximum degree of the polynomials F_1, \ldots, F_n. This paper is about the equivalence of the following two conjectures:

Conjecture 1 $JC(n)$: If $F : k^n \to k^n$ is a polynomial map with $\det(J(F)) = 1$ then F is invertible, e.g. there exists a polynomial map $G : k^n \to k^n$ such that $G \circ F = F \circ G = id$.

This conjecture is known as the Jacobian conjecture (c.f. [3, 4, 6]), and it was first formulated by O.H. Keller in [5].

Conjecture 2 $BI(n)$: For every finite dimensional k-algebra A the following holds:
If $F : A^n \to A^n$ is an invertible polynomial map such that $\det(J(F)) = 1$, then the degree of F^{-1} is bounded by a constant $C(d)$, depending only on d (and n), and not on the choice of A.

If A is a field, then one can take $C(d) = d^{n-1}$. This result is due to Gabber (c.f. [2, Ch. I, Cor. (1.4)]) if A is a reduced ring, then it is easy to reduce it to the case that A is a field. For a reduced ring A we can also take $C(d) = d^{n-1}$ as the upper bound. If A is allowed to have nilpotent elements then it is not known whether there can be given an upper bound for the degree of the inverse. In [2, Ch. I, Prop. (1.2)] Bass, Connell and Wright proved that $JC(n)$ implies $BI(n)$. Bass proved in [1] the converse. We will now give a short proof of this implication:

\footnote{1991 Mathematics Subject Classification 14E09.}
Theorem 1 If the conjecture BI(n) is true then the jacobian conjecture JC(n) is true.

Proof: Assume BI(n) holds and assume that \(F : k^n \to k^n \) is a polynomial map satisfying \(\det(J(F)) = 1 \). Without loss of generality we may assume that \(F(0) = 0 \). Now \(F \) is locally invertible in the neighbourhood of 0, e.g. there exist \(G_1, G_2, \ldots, G_n \in k[[X_1, \ldots, X_n]] \) such that \(F_i(G_1, \ldots, G_n) = X_i \) for all \(i \). Write

\[
F = F_{(1)} + F_{(2)} + \ldots + F_{(d)} \text{ and } G = G_{(1)} + G_{(2)} + G_{(3)} + \ldots
\]

where \(F_{(i)} \) and \(G_{(i)} \) are homogeneous of degree \(1 \) for all \(i \). Let us define \(\hat{F} : k[t]^n \to k[t]^n \) by

\[
\hat{F} = t^{-1}F(tX) = F_{(1)} + tF_{(2)} + \ldots + t^{d-1}F_{(d)}
\]

and likewise define

\[
\hat{G} = t^{-1}G(tX) = G_{(1)} + tG_{(2)} + t^2G_{(3)} + \ldots
\]

Since \(J(\hat{F}) = J(t^{-1}F(tX)) = J(F)(tX) \), we have \(\det(J(\hat{F})) = \det(J(F))(tX) = 1 \). Now \(\hat{G} \) is the formal inverse of \(\hat{F} \) because

\[
\hat{F} \circ \hat{G} = t^{-1}F(tt^{-1}G(tX)) = t^{-1}F(G(tX)) = t^{-1}tX = X
\]

Choose \(l > C(d) \) arbitrary. We now calculate modulo \(t^l \). Define \(\overline{F} : (k[t]/(t^l))^n \to (k[t]/(t^l))^n \) and \(\overline{G} \) to be \(\hat{F} \) respectively \(\hat{G} \) modulo \(t^l \). Again we get \(\det(J(\overline{F})) = 1 \) and \(\overline{F} \circ \overline{G} = X \). So \(\overline{G} \) is the inverse of \(\overline{F} \), hence the degree of \(\overline{G} \) is bounded by \(C(d) \). Since

\[
\overline{G} = G_{(1)} + tG_{(2)} + \ldots + t^{l-1}G_{(l)}
\]

it follows that \(t^{l-1}G_{(l)} = 0 \). The fact that \(t^{l-1} \neq 0 \) (in \(k[t]/(t^l) \)) forces \(G_{(l)} = 0 \). We can conclude that \(G_{(l)} = 0 \) for all \(l > C(d) \). So \(\overline{G} \) is also a polynomial map and this proves that \(F \) is invertible. \(\square \)

References

