PROBLEM SET 4: THE EXTREMAL PRINCIPLE

HARM DERKSEN

The (discrete version) of the extremal principle can be formulated as follows:

Truth 1. *(Extremal Principle)* A real valued function f on a finite set S has a maximum and a minimum.

There is also a continuous version of the Extremal Principle. This is not quite as obvious. It is well known in (advanced) calculus.

Theorem 1. *(Extremal Principle, continuous version)* A continuous real-valued function f on a closed interval $[a, b] \subseteq \mathbb{R}$ has a maximum and a minimum.

It sometimes can be very useful to assume that a certain quantity is maximal. We will see various examples of this.

1. THE DISCRETE EXTREMAL PRINCIPLE

Example 1 ((UM)^2C^18 2001 2). **** Show that the people at a party can be divided into two groups and sent to two different rooms in such a way that, for every person in either room, at least half that person's friends at the party are in the other room. (You may assume that friendship is a symmetric relation.

Proof. Let m be the number of all pairs $\{P, Q\}$ of people such that P and Q are in different rooms and P and Q are friends. We may assume that m is maximal over all possible ways of dividing the people in two groups. Suppose some person P has a_P friends in his own room and b_P friends in the other room. If P would move to the other room then we have to add $b_P - a_P$ to m. By our maximality assumption on m, we get that $b_P \leq a_P$ for all P which is what we wanted to prove.

Problem 1. * There are n people standing in a field, each carrying a gun. Every person shoots the person nearest to him (all people shoot at the same time, all distances are distinct). Show that at least one person survives if n is odd.

Problem 2. * Let $f : \mathbb{Z} \to \mathbb{Z}$ be an integer-valued function on \mathbb{Z} with $2f(n) < f(n - 1) + f(n + 1)$ for all $n \in \mathbb{Z}$. Prove that f has arbitrary large values.

Problem 3. ** Let S be a measurable subset of \mathbb{R}^2 with area A. Show that one can choose a set $T \subset S$ of at least A/π points in S such that all pairs of distinct points in T have distance at least 1.

The following result is actually useful in coding theory.
Problem 4. *** Let $S = \{0, 1\}^n$. For $a = (a_1, a_2, \ldots, a_n)$ and $b = (b_1, b_2, \ldots, b_n)$ we define the Hamming distance by

$$d(a, b) = \#\{i \mid a_i \neq b_i\}$$

i.e., the number of indices for which $a_i \neq b_i$. Prove that for every positive integer k there exists a subset T of S such that $d(a, b) \geq k$ for all distinct $a, b \in T$ and

$$\#T \geq \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{k-1}}.$$

(The solution to this problem is similar to the solution of Problem 3.)

Problem 5. *** Suppose that $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ are real numbers such that $a_1 \leq a_2 \leq \cdots \leq a_n$ and $b_1 \leq b_2 \leq \cdots \leq b_n$. Let c_1, c_2, \ldots, c_n be a permutation of b_1, b_2, \ldots, b_n. Show that

$$a_1b_n + a_2b_{n-1} + \cdots + a_nb_1 \leq a_1c_1 + a_2c_2 + \cdots + a_nc_n \leq a_1b_1 + a_2b_2 + \cdots + a_nb_n.$$

Problem 6. ***

(a). Suppose that x_1, x_2, \ldots, x_n are positive real numbers. Use Problem 5 to prove

$$\frac{x_1}{x_2} + \frac{x_2}{x_3} + \cdots + \frac{x_{n-1}}{x_n} + \frac{x_n}{x_1} \geq n.$$

(b). Suppose that y_1, \ldots, y_n are nonnegative real numbers. Prove that

$$\frac{y_1 + y_2 + \cdots + y_n}{n} \geq \left(y_1 y_2 \cdots y_n \right)^\frac{1}{n}.$$

(The arithmetic average is greater or equal than the geometric average. We will give many more proofs of this in the future. Hint: Reduce to the case that $y_1y_2\cdots y_n = 1$, then use (a).)

Problem 7 (IMO 1997 3). ***** Let x_1, x_2, \ldots, x_n be real numbers satisfying the conditions

$$|x_1 + x_2 + \cdots + x_n| = 1$$

and

$$|x_i| \leq \frac{n + 1}{2}, \quad i = 1, 2, \ldots, n.$$

Show that there exists a permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that

$$|y_1 + 2y_2 + \cdots + ny_n| \leq \frac{n + 1}{2}.$$

Problem 8 (Putnam 1995 A-4). ***** Suppose we have a necklace of n beads. Each bead is labeled with an integer and the sum of all these labels is $n - 1$.

Prove that we can cut the necklace to form a string whose consecutive labels
\(x_1, x_2, \ldots, x_n \) satisfy
\[
\sum_{i=1}^{k} x_i \leq k - 1, \quad \text{for } k = 1, 2, \ldots, n.
\]

Problem 9 (Putnam 1996 B3). \(*\ast\ast\ast\ast\) Given that \(\{x_1, x_2, \ldots, x_n\} = \{1, 2, \ldots, n\} \), find, with proof, the largest possible value, as a function on \(n \) (with \(n \geq 2 \)) of
\[
x_1 x_2 + x_2 x_3 + \cdots + x_{n-1} x_n + x_n x_1.
\]

Problem 10. \(*\ast\ast\ast\ast\ast\) Suppose that there are \(n \) lines in the Euclidean plane \(\mathbb{R}^2 \) such that
(a). Every two lines intersect;
(b). Through any intersection point of two lines there goes at least one other line.
Prove that all lines go through one point. (**Hint:** Choose a line \(\ell \) and an intersection point \(P \), not on \(\ell \), such that the distance of \(P \) to \(\ell \) is minimal. Deduce a contradiction.)

Problem 11. \(*\ast\ast\ast\ast\) Suppose that in the plane \(\mathbb{R}^2 \), there are \(n \) blue points and \(n \) red points (all of them distinct). Show that you can label the blue points with \(B_1, B_2, \ldots, B_n \) and the red points with \(R_1, R_2, \ldots, R_n \) such that the line segments \(B_i R_i \) do not intersect each other. (**Hint:** Choose a labeling with \(\sum_{i=1}^{n} |B_i R_i| \) minimal, where \(|B_i R_i| \) is the distance from \(B_i \) to \(R_i \).)

2. The Continuous Extremal Principle

Theorem 2. Suppose that \(f \) is a real-valued differentiable function on an open interval \((a, b) \) which has a maximum (or minimum) at \(c \in (a, b) \). Then \(f'(c) = 0 \).

Proof. By definition
\[
f'(c) = \lim_{h \to 0} \frac{f(c + h) - f(c)}{h}
\]
In particular
\[
f'(c) = \lim_{h \downarrow 0} \frac{f(c + h) - f(c)}{h} \leq 0
\]
because \(f(c) \) is the maximal value of \(f \). On the other hand
\[
f'(c) = \lim_{h \uparrow 0} \frac{f(c + h) - f(c)}{h} \geq 0.
\]
This shows \(f'(c) = 0 \). \(\square \)

Example 2. Show that
\[
x^3 + \frac{3}{x} \geq 4
\]
for \(x > 0 \).
Proof. Let $f(x) = x^3 + 3/x$. Clearly if $0 < x < \frac{1}{2}$ and if $x > 2$, then $f(x) \geq 4$. The continuous function $f(x)$ has a minimum on the interval $[\frac{1}{2}, 2]$, say at c. If $c = \frac{1}{2}$ or $c = 2$ then $f(x) \geq f(c) \geq 4$ for all $x \in [\frac{1}{2}, 2]$. Assume now that $\frac{1}{2} < c < 2$. Then we must have

$$f'(c) = 3c^2 - \frac{3}{c^2} = 0$$

by Theorem 2. We easily solve this and find $c = 1$. Now we have

$$f(x) \geq f(1) \geq 4$$

for all $x \in [\frac{1}{2}, 2]$. \qed

Problem 12. * Find the maximum value of \[x^{\frac{1}{2}} \]

for $x > 0$.

An immediate consequence of the previous theorem and the Continuous Extremal Principle is the Mean Value Theorem:

Theorem 3 (Mean Value Theorem). *Let f be a continuous real-valued function on the closed interval $[a, b] \subset \mathbb{R}$ which is differentiable on the open interval (a, b). Then there exists a $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.\]

Proof. Put

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Note that $g(a) = g(b) = 0$. There exists a $c \in [a, b]$ with $g(c)$ maximal. If $c = a$ or $c = b$, then $g(x) \leq 0$ for $x \in [a, b]$ and we can find a $c \in (a, b)$ such that $g(c)$ is minimal. In any case there is a $c \in (a, b)$ for which $g(c)$ is maximal or minimal. From the previous theorem follows that

$$g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0.$$

\qed

Problem 13. **Prove the following theorem.

Theorem 4. *Suppose f is a differentiable function on an interval (a, b). Then f is (weakly) increasing if and only if $f'(x) \geq 0$ for all $a < x < b$.*

Example 3. *Show that $\sin(x) \leq x$ for $x \geq 0$ and $\sin(x) \geq x$ for $x \leq 0$. Also show that $\cos(x) \geq 1 - \frac{1}{2}x^2$ for all $x \in \mathbb{R}$.

Proof. Consider $f(x) = \sin(x) - x$. Then $f'(x) = \cos(x) - 1 \leq 0$. This means that $f(x)$ is weakly decreasing on \mathbb{R}. Since $f(0) = 0$, we have $f(x) \leq 0$ for all $x \geq 0$ and $f(x) \geq 0$ for all $x \leq 0$. Now consider $g(x) = \cos(x) - 1 + \frac{1}{2}x^2$. we have $g'(x) = -\sin(x) + x = -f(x)$. Therefore $g'(x) \geq 0$ for $x \geq 0$ and $g'(x) \leq 0$ for $x \leq 0$. It follows that g is weakly increasing for $x \geq 0$ and g is weakly decreasing for $x \leq 0$. Since $g(0) = 0$ we have $g(x) \geq 0$ for all $x \in \mathbb{R}$.

Problem 14. * Show that

$$e^x \geq x + 1$$

for all $x \in \mathbb{R}$.

Problem 15. **** Let f be a continuous real-valued function on the closed interval $[a, a+2h] \subset \mathbb{R}$ which has a second derivative on the open interval $(a, a+2h)$. Then there exists a $c \in (a, a+2h)$ such that

$$f''(c) = \frac{f(a) - 2f(a + h) + f(a + 2h)}{h^2}.$$

In particular, it follows from the previous problem that if f is a function on \mathbb{R} with a continuous second derivative and $f''(x) \geq 0$ for all $x \in \mathbb{R}$, then

$$f\left(\frac{a+b}{2}\right) \leq \frac{f(a) + f(b)}{2}$$

for all $a, b \in \mathbb{R}$. Such a function is often called *convex*. A *concave* function on \mathbb{R} is a function satisfying $f''(x) \leq 0$ for all $x \in \mathbb{R}$. For a concave function we have

$$f\left(\frac{a+b}{2}\right) \geq \frac{f(a) + f(b)}{2}.$$