Exam 2
Math 425, Section 3

Instructor: Harm Derksen

(50 Minutes)

Friday, March 18, 2005

Name:

Work on the space provided. No books or notes allowed. Calculators may be used. Show your work!

Circle your final answer!
(1) A computer help-line get on average 2 calls between noon and 1pm. Let X be the number of calls between noon and 1pm on the help-line on a given day.

(a) (5 pts) What type of distribution (Bernoulli/binomial/Poisson/geometric/negative binomial/hypergeometric/uniform) gives the best approximation for X?

Poisson, $\lambda = 2$.

(b) (10 pts) What is the probability that $X \geq 4$?

$$1 - P(0) - P(1) - P(2) - P(3) = 1 - e^{-2} - 2e^{-2} - \frac{2^2}{2}e^{-2} - \frac{2^3}{6}e^{-2} =$$

$$= 1 - \frac{19}{3}e^{-2} \approx 0.1429.$$
(2) Anna and Bert play a game. In each game, Anna pays Bert $2.50 and she rolls two dice. If the smallest of the dice is \(i \), then Bert pays \(i \) dollars to Anna.

(a) (15 pts) What is the expected gain of Anna?

\[
(-1.5)p(-1.5) + (-0.5)p(-0.5) + (0.5)p(0.5) + (1.5)p(1.5) + (2.5)p(2.5) + (3.5)p(3.5) = \\
(-1.5)\frac{11}{36} + (-0.5)\frac{9}{36} + (0.5)\frac{7}{36} + (1.5)\frac{5}{36} + (2.5)\frac{3}{36} + (3.5)\frac{1}{36} = \frac{1}{36} \approx 0.0278
\]

(b) (10 pts) What is the expected number of games that Anna and Bert have to play until Anna rolls at least one 1 (in which case she loses $1.50)?

Let \(Y \) be the number of games needed. Then \(Y \) has a geometric distribution with \(p = P(\text{Anna rolls at least one 1}) = \frac{11}{36} \). Therefore

\[
EY = \frac{1}{p} = \frac{36}{11} \approx 3.273.
\]
(3) \(X \) is a continuous random variable whose density function is given by
\[
f(x) = \begin{cases}
0 & \text{if } x < 0 \text{ or } x \geq 3; \\
1/5 & \text{if } 0 \leq x < 1; \\
2/5 & \text{if } 1 \leq x < 3.
\end{cases}
\]

(a) (10 pts) Determine \(P(X < 2) \).
\[
P(X < 2) = \int_{-\infty}^{2} f(x) \, dx = \int_{0}^{1} \frac{1}{5} \, dx + \int_{1}^{2} \frac{2}{5} \, dx = \frac{1}{5} + \frac{2}{5} = \frac{3}{5} = 0.6
\]

(b) (10 pts) Compute \(E(X) \).
\[
E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{0}^{1} \frac{1}{5} x \, dx + \int_{1}^{3} \frac{2}{5} x \, dx = \\
\left[\frac{1}{10} x^2 \right]_{0}^{1} + \left[\frac{1}{5} x^2 \right]_{1}^{3} = \frac{1}{10} + \frac{8}{5} = 1.7
\]

(c) (10 pts) Compute \(\text{Var}(X) \).
\[
E(X^2) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{0}^{1} \frac{1}{5} x^2 \, dx + \int_{1}^{3} \frac{2}{5} x^2 \, dx = \\
\left[\frac{1}{15} x^3 \right]_{0}^{1} + \left[\frac{2}{15} x^3 \right]_{1}^{3} = \frac{1}{15} + \frac{52}{15} = \frac{53}{15}
\]
\[
\text{Var}(X) = E(X^2) - (E(X))^2 = \frac{53}{15} - \left(\frac{17}{10} \right)^2 = \frac{193}{300} \approx 0.6433.
\]
(4) (10 pts) The probability of having the rare disease *mathematosis* is 1 in 100,000. What is the probability that a city with 50,000 inhabitants has at least 2 people with this severe disease? For this question you **must** use an approximation with a Poisson random variable.

We approximate with a Poisson RV with $\lambda = np = 50,000 \cdot (1/100,000) = \frac{1}{2}$.

$$P(X \geq 2) = 1 - P(0) - P(1) = 1 - e^{-1/2} - \frac{1}{2} e^{-1/2} = 1 - \frac{3}{2} e^{-1/2} \approx 0.0902.$$

(5) (20 pts) A teacher has 10 exams in his drawer. 7 of the exams have 10 a/b multiple choice questions. The passing score for these exams is 8. The other 3 exams have 8 a/b/c multiple choice questions and have a passing score of 5. A student comes into the office. The teacher draws a random exam from his drawer. What is the probability that the student passes the exam if (s)he guesses each question?

a/b exams: binomial with p = \frac{1}{2}, n = 10:

$$P(X \geq 7) = P(7) + P(8) + P(9) + P(10) =$$

$$= \binom{10}{7} \left(\frac{1}{2}\right)^7 \left(\frac{1}{2}\right)^3 + \binom{10}{8} \left(\frac{1}{2}\right)^8 \left(\frac{1}{2}\right)^2 + \binom{10}{9} \left(\frac{1}{2}\right)^9 \left(\frac{1}{2}\right)^1 + \binom{10}{10} \left(\frac{1}{2}\right)^{10} = \frac{11}{64} \approx 0.1719$$

a/b/c exams: binomial with p = \frac{1}{3}, n = 8:

$$P(X \geq 5) = P(5) + P(6) + P(7) + P(8) = \binom{8}{5} \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right)^3 + \binom{8}{6} \left(\frac{2}{3}\right)^6 \left(\frac{1}{3}\right)^2 +$$

$$+ \binom{8}{7} \left(\frac{2}{3}\right)^7 \left(\frac{1}{3}\right)^1 + \binom{8}{8} \left(\frac{2}{3}\right)^8 \approx \frac{577}{6561} \approx 0.088$$

Bayes formula:

$$P(\text{pass}) = (0.7)(0.1719) + (0.3)(0.088) = 0.147.$$
Discrete Random Variables

<table>
<thead>
<tr>
<th>distribution</th>
<th>parameters</th>
<th>(P(X = i))</th>
<th>(\text{E}(X))</th>
<th>(\text{Var}(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>(p)</td>
<td>(p(0) = 1 - p, p(1) = p)</td>
<td>(p)</td>
<td>(p(1 - p))</td>
</tr>
<tr>
<td>Binomial</td>
<td>(n, p)</td>
<td>(\binom{n}{i} p^i (1 - p)^{n-i})</td>
<td>(np)</td>
<td>(np(1 - p))</td>
</tr>
<tr>
<td>Poisson</td>
<td>(\lambda)</td>
<td>(\lambda^i \frac{e^{-\lambda}}{i!})</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
</tr>
<tr>
<td>Geometric</td>
<td>(p)</td>
<td>((1 - p)^{i-1}p)</td>
<td>(\frac{1}{p})</td>
<td>(\frac{1 - p}{p^2})</td>
</tr>
<tr>
<td>Negative Bin.</td>
<td>(p, r)</td>
<td>(\frac{(i - 1)}{(r - 1)} p^r (1 - p)^{i-r})</td>
<td>(\frac{r}{p})</td>
<td>(\frac{r(1 - p)}{p^2})</td>
</tr>
<tr>
<td>Hypergeometric</td>
<td>(N, m, n)</td>
<td>(\frac{\binom{m}{i} \binom{N-m}{n-i}}{\binom{N}{n}})</td>
<td>(\frac{nm}{N})</td>
<td>(\frac{(N-n)nm(N-m)}{(N-1)N^2})</td>
</tr>
</tbody>
</table>

Continuous Random Variables

<table>
<thead>
<tr>
<th>distribution</th>
<th>parameters</th>
<th>density function</th>
<th>(\text{E}(X))</th>
<th>(\text{Var}(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>(\alpha, \beta)</td>
<td>(f(x) = \frac{1}{\beta - \alpha}) if (\alpha < x < \beta), 0 otherwise</td>
<td>(\frac{1}{2}(\alpha + \beta))</td>
<td>(\frac{1}{12}(\beta - \alpha)^2)</td>
</tr>
<tr>
<td>Normal</td>
<td>(\mu, \sigma)</td>
<td>(\frac{e^{-(x-\mu)^2/2\sigma^2}}{\sqrt{2\pi\sigma}})</td>
<td>(\mu)</td>
<td>(\sigma^2)</td>
</tr>
</tbody>
</table>