Problem 1. Chapter 2, Exercise 7. For each pair of axioms of incidence geometry, invent an interpretation in which those two axioms are satisfied, but the third axiom is not.

I-1, I-2 satisfied, I-3 not: Take a geometry for which there are no lines, and no points. Since there are no points, I-1 is satisfied, because one cannot find 2 distinct points. Similarly I-2 is satisfied, because there does not exist any line. I-3 is not satisfied because I-3 tells us that there exist at least 3 points, and there are none in our model.

Another example: The geometry with 1 point and no lines.

Yet another example: Take the geometry with \(n \) points, where \(n \geq 2 \), and one line \(\ell \) which is incident with all points. Through every two distinct points there is a unique line, namely \(\ell \). So I-1 is satisfied. Every line contains at least 2 points, so I-2 is satisfied. But I-3 is not satisfied because every 3 points lie on the line \(\ell \), so one cannot find 3 points which are not collinear.

I-1, I-3 satisfied, but not I-2: Let \(A, B, C \) be the points, and the lines are \{\(A, B \), \(A, C \), \(B, C \), \(A \}\}. Clearly \(A, B, C \) do not lie on a line so I-3 is satisfied. The unique line through \(A, B \) is \(\{A, B\} \) and similarly there are unique lines through \(B, C \) and through \(A \) and \(C \). So I-1 is satisfied. But I-2 is not satisfied because the line \(\{A\} \) does not contain 2 distinct points.

I-2, I-3 satisfied, but not I-1: Take the geometry with \(3 \) points \(A, B, C \) and no lines. Then I-2 and I-3 are clearly satisfied, but I-1 is not because there is no line through \(A \) and \(B \).

Problem 2. Chapter 2, Exercise 8. Show that the interpretations of Examples 3 and 4 of this chapter are models of incidence geometry and that the Euclidean and hyperbolic parallel properties, respectively, hold for them.

Both in Example 3 and Example 4, all lines have exactly 2 points on them. In particular Axiom I-2 is satisfied in both examples.

Both in Example 3 and Example 4 we have the following property. If \(P \) and \(Q \) are distinct points then \(\{P, Q\} \) is a line. Since every line has 2 points, the only line containing \(P \) and \(Q \) is \(\{P, Q\} \). So \(\{P, Q\} \) is the unique line through \(P \) and \(Q \) and I-1 is satisfied.

Both in Example 3 and Example 4, the points \(A, B, C \) are distinct and not collinear, so I-3 is satisfied.

In example 3, if we take the line \(\{A, B\} \) and the points \(C \) which does not lie on \(\{A, B\} \), then there is a unique line through \(C \) parallel to \(\{A, B\} \) namely \(\{C, D\} \) (the other lines through \(C \) are \(\{A, C\}, \{B, C\} \) but they intersect \(\{A, B\} \)). By relabeling we see that for every line \(\ell \) and
every point \(P \), not on \(\ell \) there exists a unique line \(m \) which is parallel to \(\ell \) and goes through \(P \). The Euclidean parallel property is satisfied.

In example 4, if we take the line \(\{A, B\} \) and the point \(C \), then there exist two lines through \(C \) which are parallel to \(\{A, B\} \), namely \(\{C, D\} \) and \(\{C, E\} \). By symmetry again, we see that for every line \(\ell \) and every point \(P \) not on \(\ell \) there exist two lines through \(P \) which are parallel to \(\ell \).

Problem 3. Chapter 2, Exercise 14.

(a) Let \(S \) be the following statement in the language of incidence geometry: if \(\ell \) and \(m \) are any two distinct lines, then there exists a point \(P \) that does not lie on either \(\ell \) or \(m \). Show that \(S \) is not a theorem in incidence geometry, i.e., cannot be proved from the axioms of incidence geometry.

(b) Show, however, that statement \(S \) holds in every projective plane. Hence \(\sim S \) cannot be proved from the axioms of incidence geometry either, so \(S \) is independent of those axioms.

(c) Use statement \(S \) to prove that in a finite projective plane, all the lines have the same number of points lying on them.

(d) Prove that in a finite affine plane, all the lines have the same number of points lying on them.

(a) There exist a model for which \(S \) is not true, namely example 1. The points are \(A, B, C \) and the lines are \(\{A, B\}, \{A, C\} \) and \(\{B, C\} \). There is no point that does not lie on one of the lines \(\{A, B\}, \{A, C\} \).

(b) Suppose that \(\ell \) and \(m \) are two distinct lines. They intersect at a unique point \(P \) because the plane is projective. Since \(\ell \) and \(m \) have at least 3 points, we can find a point \(Q \) on \(\ell \) and a point \(R \) on \(m \) such that \(Q \) and \(R \) are not equal to \(P \). If \(Q \) lies on \(m \) then \(Q \) lies on \(\ell \) and \(m \), so \(P = Q \) because \(P \) is the unique intersection point of \(\ell \) and \(m \). Contradiction. So \(Q \) does not lie on \(m \) and \(R \) does not lie on \(\ell \). In particular, \(Q \) is not equal to \(R \). The line \(\overline{QR} \) contains at least one more point, say \(S \). Clearly \(\overline{QR} \) is not equal to \(\ell \) because \(R \) does not lie on \(\ell \). The unique intersection point of \(\overline{QR} \) and \(\ell \) is \(Q \). Since \(S \) lies on \(\overline{QR} \) and \(S \) is not equal to \(Q \), we have that \(S \) does not lie on \(\ell \). Similarly, \(S \) does not lie on \(m \).

(c) Suppose that \(\ell \) and \(m \) are distinct lines, and \(P \) is a point not on \(\ell \) or \(m \) (which exists by (b)). If \(Q \) is a point on \(\ell \) then consider the line \(\overline{PQ} \). The line \(\overline{PQ} \) is not equal to \(m \) because \(P \) does not lie on \(m \). So these two lines intersect at a unique point, call it \(Q' \). So to every point \(Q \) on \(\ell \) we can associate a point \(Q' \) on \(m \). Suppose that \(Q, R \) are distinct points on \(\ell \) and \(Q' = R' \). Then \(Q' = R' \) lies on \(\overline{PQ} \) and on \(\overline{PR} \). Now \(Q' \) is not equal to \(P \) because \(P \) does not lie on \(m \). By the uniqueness property in Axiom I-1, \(\overline{PQ} = \overline{PR} \). This means that \(R \) and \(Q \) both lie on \(\ell \) and on \(\overline{PQ} \). Since \(\ell \neq \overline{PQ} \) (\(P \) does not lie on \(\ell \)) we must have \(Q = R \). In other words, distinct points on \(\ell \) give distinct points on \(m \). This shows that \(m \) has at least as many points as \(\ell \). By reversing the roles of \(\ell \) and \(m \) we also see that \(\ell \) has at least as many points as \(m \). So we conclude that \(\ell \) and \(m \) have the same number of points.

(d) Suppose that \(\ell \) and \(m \) are lines in the affine plane. In the projective completion, \(\ell \) and \(m \) each have an additional point at infinity. In the projective plane, \(\ell \) and \(m \) have the same number of points. Therefore, \(\ell \) and \(m \) also have the same number in the affine plane, because
we just remove one point at infinity for each if we go from the projective plane to the affine plane.

Problem 4. Chapter 2, Exercise 15.

(a) Four distinct points, no three of which are collinear, are said to form a *quadrangle*. Let \mathcal{P} be a model of incidence geometry for which every line has at least 3 distinct points lying on it. Show that a quadrangle exists in \mathcal{P}.

(b) Now suppose \mathcal{P} is a projective plane. Four distinct lines, no three of which are concurrent, are said to form a *quadrilateral*. Use the principal of duality to prove that a quadrilateral exists in \mathcal{P}.

(c) Give an example of a statement that holds in all affine planes but whose dual never holds. Thus the principle of duality is not valid for affine planes.

(a) By axiom I-1 there exist points A, B, C which are not collinear. Now \overrightarrow{AB} contains at least one other point not equal to A or B, say D. and \overrightarrow{AC} contains at least one other point not equal to A or C, say E. Now B, C, D, E form a quadrangle: Suppose that B, C, D lie on a line. The unique line through B and D is ℓ (Axiom I-1). And C lies on the unique line through B and D. So A, B, C all lie on ℓ. Contradiction. So B, C, D are not on a line. Similarly, B, C, E are not collinear, B, D, E are not collinear, and C, D, E are not collinear.

(b) The dual \mathcal{P}^* is also a projective plane, so there exist 4 points A, B, C, D such that no 3 are on a line. The points A, B, C, D in the dual plane \mathcal{P}^* correspond to lines a, b, c, d in the plane \mathcal{P}. Three of the lines a, b, c, d are concurrent if and only if the corresponding points are collinear. Since no 3 of the points A, B, C, D are collinear, no three lines from a, b, c, d are concurrent.

(c) “For every two distinct points P and Q there exists a line through P and Q.” This follows immediately from axiom I-1. The dual statement is: “Every two distinct lines have at least 1 point in common.” This statement is never true in an affine plane. Indeed, let ℓ be a line, and A be a point not on ℓ (which exists by Proposition 2.3). There exists a line m through A which is parallel to ℓ. But then ℓ and m don’t intersect.

Problem 5. Chapter 2, Major Exercises 3.

Let \mathcal{P} be a finite projective plane so that, according to Exercise 14(c), all lines in \mathcal{P} have the same number of points lying on them; call this number $n + 1$, with $n \geq 2$. Show the following:

(a) Each point in \mathcal{P} has $n + 1$ lines passing through it.

(b) The total number of points in \mathcal{P} is $n^2 + n + 1$.

(c) The total number of lines in \mathcal{P} is $n^2 + n + 1$.

(a) Let P be a point, and choose a line ℓ which does not go through P (Proposition 2.4). Let $Q_1, Q_2, \ldots, Q_{n+1}$ be the points of ℓ. If $\overrightarrow{PQ_i} = \overrightarrow{PQ_j}$ and $i \neq j$, then P, Q_i, Q_j are collinear, and P lies on line $Q_iQ_j = \ell$. Contradiction. The lines $\overrightarrow{PQ_1}, \overrightarrow{PQ_2}, \ldots, \overrightarrow{PQ_{n+1}}$ are distinct. So we have $n + 1$ lines through P. But perhaps there are more. Suppose that m is any line through P. Then m must intersect with ℓ, say they intersect at Q_i. Then P and Q_i both lie on m and $\overrightarrow{PQ_i}$, so $m = \overrightarrow{PQ_i}$. This shows that there are exactly $n + 1$ lines through P.
(b) Suppose that R is a point not equal to P. Then \overrightarrow{PR} is equal to $\overrightarrow{PQ_i}$ for some i and R lies on PQ_i. The i is unique because the lines $PQ_1, PQ_2, \ldots, PQ_{n+1}$ only intersect at P. Each of the lines PQ_i has $n + 1$ points, and n points not equal to P. So in total there are $n(n + 1)$ points which are not equal to P. So the total number of points is $n(n + 1) + 1 = n^2 + n + 1$.

(e) By dualizing part (a), we see that every line in the dual plane P^* has exactly $n + 1$ points. By part (b), P^* has $n^2 + n + 1$ points. By dualizing, we see that P has $n^2 + n + 1$ lines.