For more on the classification of simple groups, see the Notices article:

Warm-up (not to be handed in)

[DF], §4.5, exercises 30, 31, 33, 40, §4.6, exercises 1, 2, 3, §3.4, exercises 5, 7, §1.2, exercise 12.

Exercises to be handed in

Exercise 1. Do [DF], §4.5, Exercise 34.

Solution. Let Q be a p-sylow subgroup of N. Then there exists a $g \in G$ such that $Q \subseteq gPg^{-1}$. So $g^{-1}Qg \subseteq P$. Since N is normal, $g^{-1}Qg \subseteq g^{-1}Ng = N$, and $g^{-1}Qg \subseteq P \cap N$. Now $g^{-1}Qg$ is a p-Sylow subgroup of N because $|g^{-1}Qg| = |Q|$. The group $P \cap N$ is a p-subgroup of N. We must have $g^{-1}Qg = P \cap N$. This shows that $P \cap N$ is a p-Sylow subgroup of N. Suppose that $|P| = p^\alpha$ and $|Q| = p^\beta$. Then a p-Sylow subgroup of G/N has order $p^{\alpha-\beta}$. We have

$$PN/N \cong P/(P \cap N)$$

So $|PN/N| = |P|/|P \cap N| = p^\alpha/p^\beta = p^{\alpha-\beta}$ and PN/N is a p-Sylow subgroup of G/N.

Exercise 2. Do [DF], §4.5, Exercise 42. (Hint: The icosahedron has 12 vertices, 30 edges and 20 faces. Find a set of 6 elements on which this group of rigid motions (rotations) acts faithfully. You may assume that the group has 60 elements.)

Solution. This problem is a bit hard. The Icosahedron group, let us call it I, has 60 elements. (To see this: the stabilizer of a vertex has order 5, and the action on the set of 12 vertices is transitive. The group order therefore is $5 \cdot 12 = 60$.) Consider the 6 diagonals that connect two antipodal vertices. The group acts on the 6 diagonals. This action is faithful: Suppose that $g \in I$ stabilizes all diagonals. This means that g sends every vertex to itself or to its antipode. It is easy to see that if such a g fixes one vertex, it must also fix all its neighbors. From this one sees that an element of g that fixes all diagonals must be $\pm \text{Id}$. Now g cannot be $-\text{Id}$ because the group of rigid motions only contains rotations (i.e., isometries with determinant +1).
We rather would have a faithful actions on a set of 5 elements. To get this, we will define a subgroup of I of index 5. Let us label the diagonals. Or rather, we label the vertices, but we give antipodal vertices the same label. Take a triangular face and label the vertices 1, 2, 3 (say counterclockwise). Now 1 is connected to a unique vertex which is not 2 or 3 and which is not connected to 2 or 3. Label this vertex 4. Similarly, label the vertex connected to 2, “opposite” the edge 13 by 5 and the vertex connected to 3 “opposite” the edge 12 by 6. All the other vertices are antipodal to these 6 vertices. If we rotate the face 123, then we also rotate 4, 5, 6. This shows that $(123)(456) \in I$. If we send 1 and 4 to their antipodals, then this element interchanges 2 and 5 and interchanges 3 and 6. So $(25)(36) \in I$.

Let H be the subgroup generated by $(123)(456)$ and $(25)(36)$. One can easily see that $(123)(456)$ normalizes V. This shows that $H \cong \mathbb{Z}_4 \times \mathbb{Z}_3$. In particular H has order 12 and index 5. So I has a transitive action on I/H and $|I/H| = 5$. We need to check that this action is faithful. It suffices to show that $\bigcap_{g \in I} gHg^{-1} = \{1\}$. For example, the group $H' = \{(234)(651), (26)(35)\}$ is conjugate and $H' \cap H = \{1\}$. This allows us to view I as a subgroup of S_5 of index 2. So I is a normal subgroup of S_5. Since A_5 is simple, the homomorphism $A_5 \rightarrow S_5/I$ must be trivial, and $A_5 \subseteq I$. We conclude that $I \cong A_5$.

Exercise 3. Do [DF], §4.5, Exercise 46.

Solution. Note that $|S_{p^2}| = (p^2)!$. Among the numbers 1, 2, 3, ..., p^2, only $p, 2p, 3p, \ldots, p^2$ are divisible by p. Among $p, 2p, \ldots, p^2$, only p^2 is divisible by p^2. So the number of factors p is $p + 1$ and every p-Sylow subgroup of S_{p^2} has order p^{p+1}. It is easy to identify a abelian subgroup H of S_{p^2} of order p^9. Namely, let H be the subgroup generated by the p-cycles

$$(1 \ 2 \ \cdots \ p), (p + 1 \ p + 2 \ \cdots \ 2p), \ldots, (p^2 - p + 1 \ p^2 - p + 2 \ \cdots \ p^2).$$

Note that the element σ defined by

$$\sigma = (1 \ p + 1 \ 2p + 1 \ \cdots \ p^2 - p + 1)(2 \ p + 2 \ 2p + 2 \ \cdots \ p^2 - p + 2) \cdots (p \ 2p \ 3p \ \cdots \ p^2)$$

normalizes H. Let K be the subgroup generated by σ. Then K has order p. Clearly $H \cap K = \{1\}$. This shows that HK is a group of order $|H||K|/|H \cap K| = p^{p+1}$. So HK is a p-Sylow subgroup. (It is a wreath product!)

Exercise 4.

(a) Do [DF], §4.5, Exercise 1.

Solution. A p-subgroup P of a group G is a p-Sylow subgroup if p does not divide the index $|G : P|$. Suppose that P is a p-Sylow subgroup of G and P is a subgroup of H. Since $|H : P|$ divides $|G : P|$, p does not divide $|H : P|$. So P is a p-Sylow subgroup of H.
GL is denoted by \(U \).

Suppose that \(\alpha \in G \).

Exercise 5.

(a) Suppose that \(\alpha \in G \) is divisible by \(p \).

Solution. \(|gHg^{-1} : gQg^{-1}| = |gHg^{-1}| / |gQg^{-1}| = |H| / |Q| = |H : Q|\), so \(p \) does not divide \(|gHg^{-1} : gQg^{-1}|\), and \(gQg^{-1} \) is a \(p \)-subgroup of \(gHg^{-1} \). Therefore, \(gQg^{-1} \) is a \(p \)-Sylow subgroup of \(gHg^{-1} \).

(b) Do [DF], §4.5, Exercise 2.

Solution.

(c) Do [DF], §4.5, Exercise 3. Solution. Suppose that \(|G| \) is divisible by \(p \).

Let \(P \) be a \(p \)-Sylow subgroup. Then \(P \) is nontrivial. Let \(g \in P \) such that \(g \neq 1 \). Then the order of \(g \) divides \(|P| \). Let \(p^a \) be the order of \(g \). Define \(h = g^{p^{a-1}} \). Then \(h \) has order \(p \).

Exercise 5. Suppose that \(q \) is a positive power of a prime \(p \). Consider the subgroup \(U \) of upper triangular matrices with 1’s on the diagonal inside \(G := \text{GL}_n(\mathbb{F}_q) \) (I have called this group \(B \) before by mistake, typically this subgroup is denoted by \(U \), for unipotent or by \(N \) for nilpotent). We have seen that \(U \) is a \(p \)-Sylow subgroup. How many \(p \)-Sylow subgroups does \(\text{GL}_n(\mathbb{F}_q) \) have? (Hint: Compute \(N_G(U) \).)

Solution. Let \(V_r \) be the set of all vectors

\[
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_n
\end{pmatrix}
\]

with \(\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q \) and \(\alpha_1 = \alpha_2 = \cdots = \alpha_{n-r} = 0 \). So we have

\[
\mathbb{F}_q^n = V_n \supset V_{n-1} \supset \cdots \supset V_0 = \{0\}.
\]

It is easy to see that \(V_1 \) is the fixed point set of the action of \(U \) on \(\mathbb{F}_q^n \).

Similarly one can see that

\[
V_{i+1} = \{ v \in \mathbb{F}_q^n \mid (A - I)v \in V_i \text{ for all } A \in U \}.
\]

Suppose that \(C \in N_G(U) \). By induction on \(i \) we show that \(C(V_i) \subseteq V_i \). The case \(i = 0 \) is clear. Suppose that \(A \in U \) and \(v \in V_{i+1} \). Then \((C^{-1}AC - I)v \in V_i \) because \(C^{-1}AC \in U \). So \((A - I)(Cv) = (AC - C)v = C((C^{-1}AC - I)v) \in V_i \) because \(C(V_i) \subseteq V_i \) by induction. Since this is true for arbitrary \(A \in U \), we get that \(Cv \in V_{i+1} \). This shows that \(C(V_{i+1}) \subseteq V_{i+1} \).

So we see that \(C(V_i) \subseteq V_i \) for all \(i \). This implies that \(C \) is an upper triangular matrix. We conclude that \(N_G(U) \) is contained in \(B \), where \(B \) is the set of invertible upper triangular matrices. On the other hand, it is easy to see that \(B \) normalizes \(U \). We can identify \(\text{Syl}_p(G) \) with \(G/N_G(U) = G/B \). We have

\[
|G| = (q^n - 1)(q^n - q) \cdots (q^n - q^{n-1})
\]

and

\[
|B| = (q - 1)^n q^{\binom{n}{2}}.
\]
From this follows that the number of p-Sylow subgroups is
\[
\frac{|G|}{|B|} = \frac{(q^n - 1)(q^{n-1} - 1) \cdots (q - 1)}{(q - 1)^n} =
\]
\[
= (q^{n-1} + q^{n-2} + \cdots + q + 1)(q^{n-2} + q^{n-3} + \cdots + q + 1) \cdots (q^2 + q + 1)(q + 1).
\]

Hard Exercises (optional, for extra credit)

Exercise 6. Prove that $\text{PSL}_3(\mathbb{F}_2) = \text{GL}_3(\mathbb{F}_2)$ is a simple group with $168 = 2^3 \cdot 3 \cdot 7$ elements.

Solution. Suppose that $A \in G := \text{GL}_3(\mathbb{F}_2)$ has order 2. Then A is unipotent; $(A - I)^2 = A^2 - I = 0$. From linear algebra we know that such an element must be conjugate to
\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Suppose that N is a nontrivial normal subgroup of G. By Cauchy’s theorem, N contains an element of order 2, 3 or 7. Suppose that N has an element of order 2. Then N contains
\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]
These two matrices generate the upper triangular matrices (which is a 2-Sylow subgroup of order 8). We know that the number of 2-Sylow subgroups in G is $(2^2 + 2 + 1)(2 + 1) = 21$. So N has also 21 distinct 2-Sylow subgroups. But then $|N|$ is divisible by 21 and by 8 so we must have $N = G$.

Suppose N contains an element of order 7. All 7-Sylow subgroups are conjugate. So N contains all elements of order 7. In particular N contains
\[
A = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix},
B = \begin{pmatrix}
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\]
which both have order 7 and their product
\[
AB = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]
which as order 2. But then $N = G$ as we have seen.
Suppose that N has an element of order 3. Then N contains all elements of order 3. So N contains

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

and their product

$$CD = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

has order 7. But then $N = G$ as we have seen.

We conclude that $N = G$ and G is simple.

Harm Derksen, 3067EH, 763 2309

Office hours: **MWF 3-4pm (changed)**.

http://www.math.lsa.umich.edu/~hderksen/math594.w06/index.html