Warm-up (not to be handed in)

[DF], §13.3, exercise 1, §13.4, exercises 1, 2, 3, §13.5, exercises 1, 2, 7, 8, 9.

1. Exercises to be handed in

Solution. \(f(x) = x^3 + x^2 - 2x - 1 \) reduces to \(f(x) = x^3 + x^2 + 1 \in \mathbb{F}_2[x] \) modulo 2. \(f(x) \) is irreducible because it has no roots in \(\mathbb{F}_2 \). Therefore \(f(x) \) is irreducible and \([Q(\alpha) : Q] = 3 \). If \(\alpha \) is constructible then there exists a tower of extensions

\[K_0 = Q \subset K_1 \subset \cdots \subset K_r \]

with \(\alpha \in K_r \) and \([K_i : K_{i-1}] = 2 \) for all \(i \). It follows that 3 = \([Q(\alpha) : Q]\) divides \([K_r : Q]\) = 2^r. Contradiction.

Exercise 2. Do [DF], §13.4, exercise 5.

Solution. Suppose that every irreducible polynomial in \(\mathbb{F}[x] \) with a root in \(K \) splits over \(K \). Since \(K/F \) is finite, there exist \(\alpha_1, \ldots, \alpha_r \in K \) which generate (or even span) \(K \) over \(F \). Let \(p_i \) be the minimum polynomial of \(\alpha_i \). Then \(K \) is the splitting field of \(p_1 p_2 \cdots p_r \) over \(F \).

Suppose that \(K \) is a splitting field of \(f(x) \in \mathbb{F}[x] \) over \(F \) and \(p(x) \in \mathbb{F}[x] \) is an irreducible polynomial with a root \(\alpha \in K \). Let \(E \) be the splitting field of \(p(x) \) over \(K \). Let \(\beta \in E \) be any root. We have \(F(\alpha) \cong F[x]/(p(x)) \cong F(\beta) \). This isomorphism extends to an isomorphism \(\sigma : E \to E \) by Theorem 27, because \(E \) is the splitting field over \(F(\alpha) \) respectively \(F(\beta) \) of the polynomial \(p(x)f(x) \). Since \(K \) is the splitting field of \(f(x) \), we have \(\sigma(K) = K \). In particular \(\sigma(\alpha) = \beta \in K \). This shows that \(p(x) \) splits over \(K \).

solution.

(a). If \(K_1 \) and \(K_2 \) are the splitting fields over \(F \) of \(f_1(x) \) and \(f_2(x) \) respectively then \(K_1 K_2 \) is clearly the splitting field of \(f_1(x)f_2(x) \).

(b). Suppose that \(p(x) \in F[x] \) is irreducible with a root in \(K_1 \cap K_2 \). Using the previous exercise, we see that \(p(x) \) splits in \(K_1 \) but also splits in \(K_2 \). In other words: all roots of \(p(x) \) lie in \(K_1 \cap K_2 \). Again, using the previous exercise, this implies that \(K_1 \cap K_2 \) is a splitting field over \(\mathbb{F} \).

Solution. Let \(f(x) = x^p - x + a \). Note that \(f(x+1) = (x+1)^p - (x+1) + a = x^p + 1 - x - 1 + a = f(x) \). In particular, if \(\alpha \) is a root of \(f(x) \), then so is \(\alpha + 1 \). Let \(p(x) \) be an irreducible factor of \(f(x) \). Then \(p(x+1) \) is also an irreducible factor. So

\[
q(x), q(x+1), \ldots, q(x+p-1)
\]

are all irreducible factors of \(f(x) \). If they are not all distinct, then \(q(x) = q(x+r) \) for some \(r \neq 0 \). If \(\alpha \) is a root of \(q \) then so are \(\alpha + r, \alpha + 2r \), and so forth. This shows that \(q \) has at least \(p \) distinct roots, \(q(x) = f(x) \) and \(f(x) \) is irreducible and separable. Otherwise, \(q(x)q(x+1) \cdots q(x+p-1) \) divides \(f(x) \), so \(q(x) \) must have degree 1. But clearly \(f(x) \) does not have any roots in \(\mathbb{F}_p \) because

\[
f(\beta) = \beta^p - \beta + a = a \quad \text{for all } \beta \in \mathbb{F}_p.
\]

Solution. Let \(E \) be the splitting field of \(f(x) = f_1(x) \cdots f_r(x) \) over \(K \) where \(f_1, \ldots, f_r \) are distinct and irreducible. Let \(E' \) the field which is generated by the roots of \(f(x) \) over \(F \). Then \(E' \) is a splitting field of \(f(x) \) over \(F \). If \(i \neq j \) then \(f_i(x) \) and \(f_j(x) \) do not have a common root (otherwise \(f_i(x) \) divides \(f_j(x) \) and vice versa, so they would have to be the same). Since \(F \) is perfect, each \(f_i \) has only simple roots. Therefore \(f(x) \) has only simple roots so it is separable. So \(f(x) \) also has only simple roots in \(E \) (because \(E \) contains \(E' \)). If \(f(x) \) had a multiple irreducible factor in its factorization over \(K \), then it also would have a multiple root in \(E \). This is not the case, so \(f(x) \) has no repeated irreducible factor over \(K \).

Hard Exercises (optional, for extra credit)

Exercise 6. Let \(\zeta \) be a 17-th root of unity. Define

\[
\alpha_1 = \zeta + \zeta^2 + \zeta^4 + \zeta^8 + \zeta^{-1} + \zeta^{-2} + \zeta^{-4} + \zeta^{-8},
\]

\[
\alpha_2 = \zeta + \zeta^4 + \zeta^{-1} + \zeta^{-4},
\]

and \(\alpha_3 = \zeta + \zeta^{-1} \). Prove that \(\mathbb{Q}(\zeta)/\mathbb{Q}(\alpha_3), \mathbb{Q}(\alpha_3)/\mathbb{Q}(\alpha_2) \mathbb{Q}(\alpha_2)/\mathbb{Q}(\alpha_1), \mathbb{Q}(\alpha_1)/\mathbb{Q} \) are all quadratic field extensions. Conclude that it is possible to construct a regular 17-gon with compass and straightedge.

Harm Derksen, 3067EH, 763 2309
Office hours: MWF 3-4pm.
http://www.math.lsa.umich.edu/~hderksen/math594.w06/index.html