HOMEWORK 3 ON CHAPTER I
ALGEBRAIC GEOMETRY I
HARM DERKSEN
DUE: 10/15/2004

Note: As usual, we will work over an algebraically closed base field \(k \).

Extended Deadline! As a matter of policy I will give you two weeks
deadline for each problem set from now on. This will give you more chance
to ask questions. However, I still plan to produce problem sets on a weekly
basis.

(1) (a) Suppose that \(C \) is a plane curve such that \(C \times \mathbb{A}^{n-1} \) is birational
to \(\mathbb{A}^n \). Prove that \(C \) is birational to \(\mathbb{A}^1 \).
(b) * Suppose that \(p : \mathbb{A}^2 \rightarrow \mathbb{A} \) is a regular, non-constant map.
Prove that \(p^{-1}(\alpha) \) is smooth for some \(\alpha \in \mathbb{A} \). (Upgraded to a
bonus problem.) You have to assume that \(k \) has characteristic
0. Can you find a counterexample if \(k \) has positive characteris-
tic? (Hint: The tricky case is when \(p'_x \) and \(p'_y \) have a common
irreducible factor, say \(q \). View \(p \) as a function on \(q(x, y) = 0 \)
and prove that \(p \) must be constant.)

(c) Suppose that \(C \) is a plane curve with \(C \times \mathbb{A}^{n-1} \cong \mathbb{A}^2 \). Assume that
the characteristic is 0. (Once we have introduced tangent spaces
of closed sets, it will be easy to prove that \(C \) is smooth, also
in positive characteristic.) Prove that \(C \) is a rational smooth
curve and that \(k[C]^* = k^* \). (Recall that

\[
R^* = \{ f \in R \mid \exists g \in R \text{ } fg = 1 \}
\]

is the set of invertible elements in \(R \) for any ring \(R \).

(d) Let \(C \) be a curve as in (c). Prove that \(C \) is isomorphic to \(\mathbb{A}^1 \).
(You could show first that there exists a regular birational map
\(\varphi : C \rightarrow \mathbb{A}^1 \).

Hence we have proven a special case of the Zariski Cancellation
Problem: If \(C \) is an affine curve and \(C \times \mathbb{A}^1 \cong \mathbb{A}^2 \), then \(C \cong \mathbb{A}^1 \).

(2) An affine algebraic group is a Zariski closed set \(G \) together with:
(1) an element \(e \in G \) (identity), (2) a regular map \(m : G \times G \rightarrow G \) (multiplication), and (3) a regular map \(i : G \rightarrow G \) (inverse),
satisfying the group axioms: (i) \(m(e, a) = m(x, a) = a \) for all \(a \in G \),
(ii) \(m(m(a, b), c) = m(a, m(b, c)) \) for all \(a, b, c \in G \) and \(m(a, i(a)) = m(i(a), a) = e \) for all \(a \in G \). Recall that we defined a linear algebraic
group as a Zariski closed subgroup of \(\text{GL}_n(k) \) for some \(n \). If there
is no confusion, we will write \(a \cdot b \) or \(ab \) instead of \(m(a, b) \), and \(a^{-1} \)
instead of $i(a)$. From the problem on the last problem set follows that any linear algebraic group is an affine algebraic group.

A (left) regular action of G on a Zariski closed set X is a regular map $\mu : G \times X \to X$ which is also an action: (i) $\mu(e, x) = x$ for all $x \in X$ and (ii) $\mu(m(a,b), x) = \mu(a, \mu(b,x))$ for all $a, b \in G$ and all $x \in X$. If there is no confusion, we will write $a \cdot x$ instead of $\mu(a, x)$.

(a) Suppose that $\mu : G \times X \to X$ is an action of an affine algebraic group G on the Zariski closed set X. For $f \in K[X]$ we define a function $g \cdot f$ on X by $(g \cdot f)(x) = f(g^{-1} \cdot x)$. Show that $g \cdot f \in k[X]$, i.e., it is a regular function on X. Show that $G \times k[X] \to k[X]$ given by $(g,f) \mapsto (g \cdot f)$ defines a left action of G on $k[X]$.

(b) Suppose that $W \subset k[X]$ is a finite dimensional subspace. Let $V := GW$ be the k-vector space spanned by all $g \cdot f$ with $g \in G$ and $f \in W$. Show that V is a finite dimensional vector space as well. Show that the action of G on V is regular (so now V is viewed as an affine space). Define also a regular action of G on V^*, the dual space.

(c) Show that the inclusion $V \subset k[X]$ extends to a homomorphism $\psi : k[V^*] \to k[X]$. Assume W were chosen such that it contains generators of $k[X]$. Then ψ is surjective. Prove that $\psi = \phi^*$ corresponds to a regular map $\phi : X \to V^*$. (This is a closed immersion by definition.) Show that ϕ is respects the action: $\phi(g \cdot x) = g \cdot \phi(x)$ for all $g \in G$, $x \in X$. If ϕ respects the action, we will say that ϕ is G-equivariant.

(d) Note that any affine algebraic group G acts on itself via m. Let $\phi : G \to V$ be an equivariant closed immersion into a vector space V on which G acts linearly and regularly. (As in the previous part, but with V^* replaced by V.) Define $\lambda(g) \in \text{End}(V)$ by $\lambda(g)(v) = g \cdot v = \mu(g,v)$ for $v \in V$. Show that λ induces an isomorphism of G with a Zariski closed subset of $\text{GL}(V)$.

This shows that every affine algebraic group is in fact a linear algebraic group.