1. Let \mathbb{Z}_+ be the set of positive integers. Let T be the polynomial ring $K[x, y]$ in two variables over a field K and let $S = K[x, y][x/y^n : n \in \mathbb{Z}_+]$, which is a subring of the fraction field of T. The elements x, y, and $\{x/y^n : n \in \mathbb{Z}_+\}$ generate a maximal ideal \mathcal{M} of S. Let $J = x\mathcal{M}$, and let $R = S/J$. Let u be the image of x in R. Show that u is a nonzero but that u is in every nonzero ideal of R. Show that the annihilator of u in R is m/J. Show also that the ring $K[y]$ is a homomorphic image of R, so that R is not quasilocal. (Clearly, $y \in m$ is not nilpotent.)

2. Let R be a local ring, and let f be an element of R that is not a zerodivisor. Suppose that R/fR is an integral domain. Prove that R is an integral domain.

3. Let R be a ring and I, J ideals of R.
 (a) Show that the kernel of the map $R/J \otimes_R I \to R/J$ obtain by applying $R/J \otimes_R -$ to the inclusion $I \subseteq R$ is $(I \cap J)/IJ$.
 (b) Show that if R/J is flat, then $I \cap J = IJ$ for every ideal I of R.
 (c) Show conversely that if $I \cap J = IJ$ for every ideal I of R, then R/J is flat as an R-module.

4. Let K be a field, and let $Y, X_1, X_2, X_3, \ldots X_n, \ldots$ be countably indeterminates over K. Let $T = K[Y, X_1, X_2, X_3, \ldots X_n, \ldots]$ and let $J = (X_ny^n : n \geq 1)T \subseteq T$. Let $R = T/J$. Let Q denote the prime ideal of R generated by all the x_n, $n \geq 1$, so that $R/Q \cong K[y]$. Let y be the image of Y in R. Show that $\text{Hom}_R(R/Q, R) = 0$, while $\text{Hom}_R((R/Q)_{y}, R_y) \neq 0$. Hence, localization at $W = \{y^n : n \in \mathbb{N}\}$ does not commute with Hom_R in this instance. [Of course, R/Q is not finitely presented, although it is finitely generated.]

5. Let R be a ring and M an R-module.
 (a) Prove that M is flat if and only if M_{P} is R_{P}-flat for every prime ideal P of R.
 (b) Suppose that R is reduced and 0-dimensional. Prove that every R-module is flat.
 (c) Let R be a ring such that every R-module is flat.
 (1) Prove that for every element $r \in R$ there exists an element $u \in R$ such that $r = ur^2$. Conclude that $V(r)$ is open as well as closed.
 (2) Prove that R is reduced.
 (3) Prove that the Krull dimension of R is 0.

6. Let R be a commutative ring. Suppose that every local ring R_P of R is an integral domain and that $\text{Spec}(R)$ is connected. Show that if R has only finitely many minimal primes, then R is an integral domain.

EXTRA CREDIT Suppose that the ring R satisfies the hypotheses in the second sentence of 6., but that no condition is imposed on the minimal primes of R. Must R be an integral domain?