1. If \(R \) is a ring, \(f \in R \) and \(I \subseteq R \), \(I :_R f \) denotes the ideal \(\{ r \in R : rf \in I \} \).
 (a) Prove that for each prime \(P \) of \(R \), the image of \(f \) in \(R_P \) is not in \(IR_P \) iff \(P \supseteq I :_R f \).
 (b) Let \(K \) be a field, let \(R = K[x_1, \ldots, x_n] \) be a polynomial ring, let \(I = (x_1^2, \ldots, x_n^2) \) and let \(f = x_1 + \cdots + x_n \). Determine generators for \(I :_R f \) for \(n \leq 4 \). Additional credit will be given for analysis for larger \(n \). (The answer may depend on \(\text{char}(K) \).)

2. Let \(R \) be a nonzero reduced commutative ring with only finitely many prime ideals, all of which are maximal. Show that \(R \) is isomorphic with a finite product of fields.

3. Let \(R \) be a nonzero reduced ring with only finitely many minimal primes. Let \(W \) be the multiplicative system consisting of all elements not in any minimal prime. Show that every element of \(W \) is a nonzerodivisor in \(R \). (Hence, \(R \) injects into \(W^{-1}R \).) Prove that \(W^{-1}R \) is a finite product of fields.

4. (a) Let \(R \) be a ring, \(W \subseteq R \) a multiplicative system, and \(S = W^{-1}R \). Let \(f : M \to N \) be an \(R \)-linear map of \(S \)-modules. Show that \(f \) is \(S \)-linear, i.e., \(\text{Hom}_R(M, N) = \text{Hom}_S(M, N) \).
 (b) Let \(R \) be the polynomial ring \(K[x, y] \) over a field \(K \) and \(S \) be \(K[x, y/x] \) (a subring of the fraction field of \(R \)). Let \(v = y/x \in S \). Note that \(K[x, v] \) is also a polynomial ring in two variables. Let \(M = S/xS \). Is \(\text{Hom}_R(M, S) = \text{Hom}_S(M, S) \)? Prove your answer. [Later EC: Is \(\text{Hom}_R(S, M) = \text{Hom}_S(S, M) \)? In any case, describe both.]

5. If \(P \) is a prime ideal of \(R \), \(P^{(n)} \) denotes the contraction of \(P^nR_P \) to \(R \), and is called the \(n \)th symbolic power of \(P \). Let \(T = K[u, v, w, x, y, z] \) be a polynomial ring over a field \(K \), and let \(f = ux + vy + wz \). Let \(R = T/fT \). Let \(P \) be the ideal of \(R \) generated by \(v, w, x, y, \) and \(z \). Show that \(P \) is prime, and that \(P^{(2)} \neq P^2 \).

6. Let \(R \) be a ring and \(W \subseteq R \) a multiplicative system. Let \(S = W^{-1}R \). Let \(M \) and \(N \) be \(R \)-modules. Note that there is an \(S \)-linear map \(\theta : W^{-1}\text{Hom}_R(M, N) \to \text{Hom}_S(W^{-1}M, W^{-1}N) \) such that \([f/w] \mapsto (1/w)W^{-1}f \), where \(W^{-1}f \) is as described in class. Show that if \(R = K[x_1, \ldots, x_n, \ldots] \) is the polynomial ring in a countably infinite sequence of variables over a field \(K \), \(W \) is the set of powers of \(x_1 \), \(M = R/I \), where \(I = (x_n : n \geq 2)R \), and \(N = R/J \), where \(J = (x_1^2x_n : n \geq 2)R \), and then the map the map \(\theta \) is not onto: in fact, show that there is an isomorphism \(W^{-1}M \cong W^{-1}N \) that is not in the image of \(\theta \). (Later, we’ll give a condition that is sufficient for \(\theta \) to be an isomorphism.)

Extra Credit 3. Let \(M \) be a module over a ring \(R \). Suppose that \(M_P \) is generated as an \(R_P \)-module by at most one element for every prime \(P \) of \(R \). Must \(M \) be a finitely generated \(R \)-module? Prove your answer.

Extra Credit 4. An integral domain \(R \) is said to be normal if it contains every element \(f \) of its fraction field that satisfies a monic polynomial with coefficients in \(R \). Suppose that \(R \) is a domain that satisfies the weaker condition that whenever \(f \) is in the fraction field and \(f^n \in R \) for some \(n \in \mathbb{Z}_+ \) then \(f \in R \). Must \(R \) be normal? Prove your answer.