1. Let $T = K[x_1, \ldots, x_n]$ be a polynomial ring and let $R = T_f$, where $f = x_1 \cdots x_n$. Determine an explicit K-subalgebra $A \subseteq R$ that is generated over K by algebraically independent elements and such that R is module-finite over A.

2. Let $R = K[x_1, \ldots, x_n]$ be a polynomial ring over a field and let S, T be disjoint sets of monomials $x_1^{a_1} \cdots x_n^{a_n}$ in R such that $1 \in S$, S is closed under multiplication, T is closed under multiplication by elements of S, and every monomial in R is in $S \cup T$. Let $B = K[S] \subseteq R$. Prove that B is a direct summand of R as a B-module by exhibiting a B-module complement for B in R. (Hence, B is Noetherian and normal.)

3. Let $x_{1,1}, \ldots, x_{1,n_1}, \ldots, x_{i,1}, \ldots, x_{i,n_i}, \ldots, x_{k,1}, \ldots, x_{k,n_k}$ be k sequences of mutually distinct indeterminates over a field K, such that the ith set has n_i elements. Let R be the polynomial ring in all these x_{ij} over K and let B be the K-subalgebra of R generated by all monomials of the form $x_{1,t_1}x_{2,t_2} \cdots x_{k,t_k}$, so that there is one factor from each set. Prove that B is a normal Noetherian domain, and determine its Krull dimension.

4. Call an element P of a polynomial ring R over a field special if it has the form $f^7 + g^{11} + h^{13}$, where f, g, and h are polynomials in R. Let $K \subseteq L$ be fields, with K algebraically closed. Suppose that P is in the polynomial ring $K[x_1, \ldots, x_n]$ and is special in $L[x_1, \ldots, x_n]$. Prove that P is special in $K[x_1, \ldots, x_n]$.

5. Let A be an integral domain that is not a field such that intersection of all of its maximal ideals is (0). Let m be a maximal ideal of the polynomial ring $A[x_1, \ldots, x_n]$. Prove that m contains an element of $A - \{0\}$.

6. Let $S = K[x, y, z]$ be a polynomial ring over a field and let $R = K[x + y, xy, xyz] \subseteq S$ (R is also a polynomial ring). Describe explicitly the image of Spec (S) in Spec (R) as a finite union of sets, each of which is the intersection of an open set and a closed set.

Extra Credit 5. Let $R = K[x, y]$ and $S = [x, y/x]$ as in 4.(b) of Problem Set #2. Let $M = S/S$. Describe as explicitly as you can $\text{Hom}_R(S, M)$ and $\text{Hom}_S(S, M)$. Are they equal? [Moral: in general, localization behaves better than adjoining a fraction.]

Extra Credit 6. Let R_λ, $\lambda \in \Lambda$, be a colimit system (direct limit system) of principal ideal domains and injective homomorphisms, and let R be the direct limit. Suppose that if $\lambda \leq \mu$ and r is an irreducible element of R_λ, then its image in R_μ is irreducible in R_μ. Is R necessarily a principal ideal domain?

Extra Credit 7. Let $K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n \subseteq \cdots$ be an infinite chain of fields. Let L be their union. Let R denote the subring of the formal power series ring $L[[x]]$ in one variable consisting of all power series $\sum_{n=0}^{\infty} c_n x^n$ such that $c_n \in K_n$ for all n. You may assume that R is a ring. Give necessary and sufficient conditions on the chain of fields for R to be Noetherian.