Let $R = K[x_1, \ldots, x_n]$ and let μ_1, \ldots, μ_k be a sequence of monomials in R. Let M be a monomial submodule of the finitely generated free module F. Then μ_1, \ldots, μ_k is a regular sequence on F/M if and only if no variable that occurs in μ_i occurs in another μ_j, nor in any of the minimal monomial generators of M.

Proof. Since $M = I_1e_1 + \cdots + I_se_s$ where the I_j are monomial ideals, we reduce at once to the case where $M = I$ is a monomial ideal: call the minimal monomial generators ν_1, \ldots, ν_h. We use induction on k. If $k = 1$, note that if μ_1 shares a variable x_i with ν_i then $\nu_i :R \mu_1$ is generated by a monomial that divides ν_i and has a smaller exponent on x_i then ν_i does. This element is not in I, by the minimality of ν_i, but is in $I : \mu_1$. Hence the condition that μ_1 not involve a variable occurring in any ν_i is necessary. On the other hand, if that is true then $\nu_i :R \mu = \nu_i R$ for every i, $1 \leq i \leq h$, and since colon distributes over sum we have that

$$I :R \mu_1 = \left(\sum_{i=1}^h \nu_i R \right) :R \mu_1 = \sum_{i=1}^h (\nu_i R :R \mu_1) = \sum_{i=1}^h \nu_i R = I,$$

as required. Moreover it is clear that $\nu_1, \ldots, \nu_h, \mu_1$ are minimal generators for $I + \mu_1 R$. The inductive step is then an application of the case where $k = 1$. \qed

Compatible orders and a sufficient condition for regularity of a sequence

Given a polynomial ring $K[x_1, \ldots, x_n]$ over a field K and a monomial order $>$ on a finitely generated R-free module F with ordered free basis e_1, \ldots, e_s, recall that for every t, $1 \leq t \leq s$, there is a monomial order $>_t$ on R defined by the condition $\mu > \mu'$ precisely if $\mu e_t > \mu' e_t$. Moreover, if $g \in R - \{0\}$ and $f \in F - \{0\}$ are such that $\text{in}(f)$ involves e_t, then

$$(\dagger) \quad \text{in}(gf) = \text{in}_{>_t}(g) \text{in}(f).$$

See the second page of the Lecture Notes of January 19. We shall say that a monomial order $>_R$ on R is compatible with a given monomial order $>_F$ on F if all of the orders $>_t$
are the same, and agree with \(>_R \). It follows at once that if \(>_R \) and \(> \) on \(F \) are compatible, then for all \(g \in R - \{0\} \) and \(f \in F - \{0\} \),

\[
(††) \quad \text{in}(fg) = \text{in}_{>_R}(g\text{in}(f)).
\]

In fact, condition \((††)\) is easily seen to be equivalent to compatibility. In working with compatible monomial orders, we typically use the same symbol \(> \) for both.

If two of the \(>_t \) are distinct, which can happen, there is no compatible order on \(R \). If there is a compatible order on \(R \), it is unique. The standard method of extending a monomial order on \(R \) to a monomial order on \(F \) (i.e., \(\mu e_i > \mu' e_j \) if \(\mu > \mu' \) or \(\mu = \mu' \) and \(i < j \)) always produces a monomial order on \(F \) with which the original monomial order is compatible. In particular, revlex on \(F \) is compatible with revlex on \(R \). In the sequel, when \(F \) is graded so that its generators do not necessarily all have degree 0, we give a slightly different way of extending revlex to \(F \)—but it is still compatible with revlex on \(R \).

We next observe the following sufficient (but not necessary) condition for elements of \(R \) to be a regular sequence on \(F/M \). Notice that we are not assuming that \(M \) is graded, nor that \(> \) is revlex.

Theorem. Let \(R = K[x_1, \ldots, x_n], f_1, \ldots, f_k \in R \) and let \(M \) be any submodule of a finitely generated free \(R \)-module \(F \). Suppose that we have compatible monomial orders on \(R \) and \(F \). If \(\text{in}(f_1), \ldots, \text{in}(f_k) \) form a regular sequence on \(\text{in}(M) \), then \(f_1, \ldots, f_k \) is a regular sequence on \(M \) and, for \(1 \leq i \leq k \), \(\text{in}(M + (f_1, \ldots, f_i)) = \text{in}(M) + (\text{in}(f_1), \ldots, \text{in}(f_i)) \).

Proof. We use induction on \(k \), and we consequently can reduce at once to the case where \(k = 1 \). We write \(f \) for \(f_1 \), and we must show that if \(\text{in}(f) \) is not a zerodivisor on \(F/\text{in}(M) \) then \(f \) is not a zerodivisor on \(F/M \) and \(\text{in}(M + fM) = \text{in}(M) + \text{in}(f)F) \).

If \((1)\) fails we have \(fu \in v \in M \) with \(u \notin M \), and we can choose such an example with \(\text{in}(u) \) minimum, since the monomial order on \(F \) is a well-ordering. By the compatibility of orders, \(\text{in}(fu) = \text{in}(f)\text{in}(u) = \text{in}(v) \in \text{in}(M) \), and since \(\text{in}(f) \) is not a zerodivisor on \(\text{in}(M) \), we have that \(\text{in}(u) \in \text{in}(M) \), so that we can choose \(u' \in M \) with \(\text{in}(u) = \text{in}(u') \). Then \(fu \) and \(fu' \) are both in \(M \), and so \(f(u - u') \in M \). But the initial terms of \(u \) and \(u' \) cancel, so that \(u = u' \) or \(\text{in}(u - u') < \text{in}(u) \). The latter contradicts the minimality of the choice of \(u \), and the former shows that \(u \in M \).

To prove \((2)\), note that \(\text{in}(M) + \text{in}(f)F \subseteq \text{in}(M + fF) \) is obvious, and so we need only prove the opposite inclusion. If it fails, we can choose \(u + fv \in M + fF \) where \(u \in M \), \(v \in F \), such that \(\text{in}(u + fv) \notin \text{in}(M) + \text{in}(f)F \), and, again, we can make this choice so that \(\text{in}(v) \) is minimum (note that \(v \) cannot be 0). We consider two cases.

First case: \(\text{in}(fv) \in \text{in}(M) \). Then \(\text{in}(f)\text{in}(v) \in \text{in}(M) \) and, since \(\text{in}(f) \) is not a zerodivisor on \(\text{in}(M) \), we have that \(\text{in}(v) \in \text{in}(M) \) and we can choose \(v' \in M \) such that \(\text{in}(v) = \text{in}(v') \). Then \(u + fv = (u + fv') + f(v - v') \) still has initial form not in \(M + fV \), and we have \(u + fv' \in M \) while \(v - v' \) has smaller initial form than \(v \), a contradiction.

Second case: \(\text{in}(fv) \notin \text{in}(M) \). In this case, \(\text{in}(fv) \) and \(\text{in}(u) \in \text{in}(M) \) cannot cancel, and so one of them must be \(\text{in}(u + fv) \). But then either \(\text{in}(u + fv) = \text{in}(u) \in \text{in}(M) \) or \(\text{in}(u + fv) = \text{in}(fv) = \text{in}(f)\text{in}(v) \in \text{in}(f)F \), as required. □
Special properties of reverse lexicographic order and a converse result

Throughout this section, $R = K[x_1, \ldots, x_n]$ is a polynomial ring over K considered with reverse lexicographic order, F is a finitely generated graded free R-module with ordered free homogeneous basis e_1, \ldots, e_s, also with reverse lexicographic order, which we define as follows. In the graded case we still want revlex to define total degree. Therefore, we define $\mu e_i >_{\text{revlex}} \mu' e_j$ to mean either that (1) $\deg(\mu e_i) > \deg(\mu' e_j)$ or (2) $\deg(\mu e_i) = \deg(\mu' e_j)$ and $\mu < \mu'$ in lexicographic order for the variables ordered so that

$$x_n > x_{n-1} > \cdots > x_2 > x_1,$$

or (3) $\deg(\mu e_i) = \deg(\mu' e_j)$, $\mu = \mu'$, and $i < j$.

Let M be a graded submodule of F. We already noted at the end of the Lecture of January 31 that x_{k+1}, \ldots, x_n is a regular sequence on F/M if and only if x_{k+1}, \ldots, x_n is a regular sequence on $F/\text{in}(M)$, which we know is equivalent to the condition that no minimal monomial generator of $\text{in}(M)$ involves any of the variables x_{k+1}, \ldots, x_n. The preceding Theorem already shows that the condition is sufficient. We next want to prove that it is necessary as well. The following very easy result is a key fact about revlex that we shall use repeatedly.

Lemma. Let notation be as above and let $u \in F - \{0\}$ be a homogeneous element. Then for every positive integer h, x_n^h divides u if and only if x_n^h divides $\text{in}(u)$.

Proof. “Only if” is obvious. The “if” part is immediate from the definition: since all terms have the same degree, any term not divisible by x_n^h is strictly larger than any term divisible by x_n^h. □

Proposition. Let notation be as above, with $M \subseteq F$ graded, and let g_1, \ldots, g_r be a Gröbner basis for M consisting of homogeneous elements. Let k be a positive integer.

(a) $\text{in}(M + x_n^h F) = \text{in}(M) + x_n^h F$, and $g_1, \ldots, g_r, x_n^h e_1, \ldots, x_n^h e_s$ is a Gröbner basis for $M + x_n^h F$.

(b) $\text{in}(M :_F x_n^h) = \text{in}(M) :_F x_n^h$. Moreover, if for $1 \leq j \leq r$, t_j denotes the greatest integer in the interval $[0, h]$ such that $x^{t_j} | g_j$ and $h_j = g_j / x_n^{t_j}$, then h_1, \ldots, h_r is a Gröbner basis for $M :_F x_n^h$.

Proof. (a) Clearly, $\text{in}(M) + x_n^h F \subseteq \text{in}(M + x_n^h F)$. Now consider $\text{in}(u + x_n^h f)$ where $u \in U$ and $f \in F$. In revlex, the homogeneous component of an element of highest degree has the same initial form as the element, and so we may assume that $u + x_n^h f$ is homogeneous. If the initial term is divisible by x_n^h the result is proved. If not, it must be a term of u, and x_n must occur with a strictly smaller exponent than h. All other terms of u must be smaller: either they are not divisible by x_n^h and persist in $u + x_n^h f$, or they are divisible by x_n^h, which forces them to be smaller than u in revlex, by the definition of revlex. The statement
about the Gröbner basis is immediate, since the specified elements are in \(M + x_n^h F \) and their initial terms span \(\text{in}(M) + x_n^h F \).

(b) We have that a monomial \(\nu \in \text{in}(M : F x_n^h) \) iff and \(x_n^h \nu \in \text{in}(M) \) iff \(x_n^h \nu = \text{in}(w) \) with \(w \in M \) homogeneous. But \(x_n^h \) divides \(w \) if and only \(x_n^h \) divides \(\text{in}(w) \), by the Lemma above, and the result is immediate. We then have that \(\text{in}(M) \) is the span of the \(\text{in}(g_j)R : F x_n^h \), and these are the same as the \(\text{in}(g_j/x_j^h)R \). Again, we are using that a power of \(x_n \) divides \(g_j \) if and only if it divides \(\text{in}(g_j) \). □

We can now prove:

Theorem. Let notation be as above, with \(M \subseteq F \) graded, and use revlex order on \(F \) and \(R \). Then \(x_{k+1}, \ldots, x_n \) is a regular sequence on \(F/M \) if and only if it is a regular sequence on \(F/\text{in}(M) \).

Proof. Since regular sequences are permutable in the graded case, we may show instead the same result for \(x_n, \ldots, x_{k+1} \). We already know the “if” part. Now suppose that \(x_n \) is not a zerodivisor on \(F/M \). Then \(M : F x_n = M \), and so

\[
\text{in}(M) = \text{in}(M : F x_n) = \text{in}(M) : F x_n = \text{in}(M).
\]

The proof is now completed by induction: when we work mod \(x_n \), \(R \) is replaced by \(R/x_n R = K[x_1, \ldots, x_{n-1}] \), \(F \) by \(F/x_n F \), and \(M \) by \(M/x_n M \rightarrow F/x_n F \), since \(x_n \) is not a zerodivisor on \(M/x_n M \). The hypothesis is preserved because of the preceding Proposition. □