Math 615: Lecture of February 7, 2007

Remark. Let $R \to S$ be a homomorphism of Noetherian rings, I an ideal of R, and M a finitely generated S-module such that $IM \neq M$. Let $x_1, \ldots, x_k \in I$ be a regular sequence on M. Let $J = (x_1, \ldots, x_k)R$. Then $\text{depth}_I M / JM = \text{depth}_M M - k$, and $\text{depth}_{I/J} M / JM = \text{depth}_I M - k$, where in the second equality we have replaced R by R/J and S by S/JS. The point is that if we extend x_1, \ldots, x_k to a maximal regular sequence x_1, \ldots, x_n in I on M, then x_{k+1}, \ldots, x_n is very easily seen to be a maximal regular sequence in I on M/JM, and its image in R/J is a maximal regular sequence in I/J on M/JM.

Remark. We next want to see that, with the same hypothesis as in the first sentence of the previous remark, we have that $\text{depth}_I M = \text{depth}_{IS} M$. Let $\theta : R \to S$ be the map, and let x_1, \ldots, x_n be a maximal regular sequence in I on M. Clearly, $\theta(x_1), \theta(x_2), \ldots, \theta(x_n)$ is a regular sequence on M in IS because x_i acts on M exactly the way that $\theta(x_i)$ acts on M. We need only see that it is maximal. Again, since the x_i act on M exactly as the $\theta(x_i)$ act on M, we have that $M / (x_1, \ldots, x_n)M = M / (\theta(x_1), \theta(x_2), \ldots, \theta(x_n))M$.

Since x_1, \ldots, x_n is a maximal regular sequence on M, there exists an element $u \in M / (x_1, \ldots, x_n)M - \{0\}$ that is killed by I. Since the annihilator of u is an ideal of S, we must have that u is killed by IS as well, which shows that $\theta(x_1), \theta(x_2), \ldots, \theta(x_n)$ is a maximal regular sequence in IS on M, as required. □

Remark. When (R, m, K) is local, $\text{depth}(M)$, with no specification of an ideal, is understood to be $\text{depth}_m M$.

Remark. When I is an ideal of R, $\text{depth}_I R$ is sometimes referred to as the depth of I as an ideal. However, the phrase “as an ideal” is frequently omitted. This terminology is flawed, since the two depths may be different. For example, if $R = K[[x, y]]$ and $I = (x, y)R$, the depth of I as an ideal is 2, since x, y is a regular sequence. However, if I is regarded as an R-module, the depth of I on $m = (x, y)R$ is only one: I/xI has depth 0, since the image of x is killed by $m = I$, while $x \notin mI$. However, the situation is rarely confusing, because when I is an ideal, “the depth of I” is almost always used for $\text{depth}_I R$.

Linear systems of parameters for standard graded algebras

We shall refer to a finitely generated \mathbb{N}-graded algebra R over $R_0 = K$, a field, such that R_1, the vector space of linear forms, generates R as a standard graded K-algebra. The following fact gives a very strong form of avoidance of ideals, not just prime ideals, and will enable us to prove the existence of regular sequences consisting of linear forms.
Proposition. Let K be an infinite field, $V \subseteq W$ be vector spaces, and let V_1, \ldots, V_h be vector subspaces of W such that $V \subseteq \bigcup_{i=1}^h V_i$. Then $V \subseteq V_i$ for some i.

Proof. If not, for each i choose $v_i \in V - V_i$. We may replace V by the span of the v_i and so assume it is finite-dimensional of dimension d. We may replace V_i by $V_i \cap V$, so that we may assume every $V_i \subseteq V$. The result is clear when $d = 1$. When $d = 2$, we may assume that $V = K^2$, and the vectors $(1, c), c \in K - \{0\}$ lie on infinitely many distinct lines. For $d > 2$ we use induction. Since each subspace of $V \cong K^d$ of dimension $d - 1$ is covered by the V_i, each is contained in some V_i, and, hence, equal to some V_i. Therefore it suffices to see that there are infinitely many subspaces of dimension $d - 1$. Write $V = K^2 \oplus W$ where $W \cong K^{d-2}$. The line L in K^2 yields a subspace $L \oplus W$ of dimension $d - 1$, and if $L \neq L'$ then $L \oplus W$ and $L' \oplus W$ are distinct subspaces. □

Theorem. Let R be a standard graded K-algebra, and let M be a \mathbb{Z}-graded finitely generated R-module. Let $m = \bigoplus_{d=1}^\infty [R]_d$ denote the homogeneous maximal ideal of R.

(a) R has a homogeneous system of parameters consisting of linear forms.

(b) The depth of M on m is at least h if and only if there exists a regular sequence on M consisting of linear forms.

(c) In particular, the depth of R on m is at least h if and only if there is a regular sequence on R of length h consisting of linear forms.

Proof. We construct the required sequence of linear forms for (a) and (b) recursively as follows. If the union of minimal primes of R (respectively, the associated primes of M) contains $V = [R]_1$, then by the Lemma above, one of them contains V, and since V generates m, we have that m is a minimal prime of R (respectively, an associated prime of M). In the case of (a), R has dimension 0. In the case of (b), the depth of M on m is 0. In either case, the empty sequence satisfies the condition. If not, we can choose a linear form F_1 that is not in the union of these primes. This gives the first element of a system of parameters in (a), and the first element of a regular sequence in part (b). We can construct the required sequence recursively by passing to $R/F_1 R$ for (a) and to $M/F_1 M$ for (b). Part (c) is simply the case of (b) where $M = R$. □

Change of field

We want to make several comments about the effect of change of field on various questions.

Discussion: change of field and Gröbner bases. Let $R = K[x_1, \ldots, x_n]$, let F be a finitely generated free R-module with ordered basis e_1, \ldots, e_s, let $M \subseteq F$ be a submodule, and fix a monomial order on F. Let $K \subseteq L$ be a field extension. We use L as a subscript to indicate the result of applying $L \otimes_K -$. Thus, $R_L \cong L[x_1, \ldots, x_n]$, F_L is a finitely generated free R_L-module with ordered basis $1 \otimes e_1, \ldots, 1 \otimes e_s$, $M_L \subseteq F_L$, and the monomials in F_L are
the images of the monomials in F under the obvious injection $F \to F_L$ that sends $f \mapsto 1 \otimes f$ for all $f \in F$. We identify F with its image. The monomial order on F then immediately gives a corresponding monomial order on F_L because the two sets of monomials have been identified.

In this situation, let g_1, \ldots, g_r denote a Gröbner basis for M. Then g_1, \ldots, g_r is a Gröbner basis for M_L as well. We can apply the Buchberger criterion to see this: as we apply it, all the divisions can be carried out over K, and so we have standard expressions with remainder 0, as required, independent of whether we think over K or over L. This implies that $\text{in}(M_L)$ contains the same monomials as $\text{in}(M)$, and we have $\text{in}(M_L) = \text{in}(M)_L$.

In the graded case, the Hilbert functions of M and M_L are the same. We know that R and R_L are both Cohen-Macaulay or not alike: this is problem 4(d). in Problem Set #2.

There are also many properties of rings which, if they hold for R_L, hold for R. If R_L is (1) reduced, or (2) a domain, or (3) normal, so is R. (1) and (2) hold simply because $R \subseteq R_L$. The third may be proved as follows: suppose that a/b is integral over R, where $a \in R$ and b is a nonzerodivisor over R. Because R_L is flat over R, b is a nonzerodivisor on R_L, and a/b is certainly integral over R_L. It follows that $a/b \in R_L$, and so $a \in bR_L \cap R$.

When S is faithfully flat over R, for every ideal I of R, $IS \cap R = I$ ($R/I \to S/IS$ is still faithfully flat, which implies injective). Hence, $bR_L \cap R = bR$, and we have that $a \in bR$, which implies that $a/b \in R$.

However, R_L can be a UFD even though R is not. For example, if $R = \mathbb{R}[X, Y](X^2 + Y^2 - 1)$, where X and Y are indeterminates, it turns out that R is not a UFD (the height one prime ideal $(X, Y - 1)R$ can be shown not to be principal), but $R_C \cong \mathbb{C}[X, Y]/(X^2 + Y^2 - 1)$ is a UFD: one can use new variables $U = X + iY$, $V = X - iY$, making a linear change of coordinates over \mathbb{C}, and then see that $R_C \cong \mathbb{C}[U, V]/(UV - 1) \cong \mathbb{C}[U, 1/U]$.

Generic linear combinations as regular sequences

We want to show that if an ideal contains a regular sequence on a module M, one can use “generic” linear combinations of the generators of the ideal, i.e., linear combinations with indeterminate coefficients, to produce such a regular sequence. We first observe:

Proposition. Let R be a Noetherian ring, and $S = R[z_1, \ldots, z_k] = R[z]$ a polynomial ring over R. Let $N \subseteq M$ be finitely generated R-modules. We write $M[z]$ for $R[z] \otimes_R M$.

(a) If P is prime in R, then PS is prime in S.

(b) If M is P-coprimary, then $M[z]$ is PS-coprimary.

(c) If $N = N_1 \cap \cdots \cap N_k$ is a primary decomposition of N in M, then we have that $N[z] = N_1[z] \cap \cdots \cap N_k[z]$ is a primary decomposition of $N[z]$ in $M[z]$.

(d) $\text{Ass}(M[z])$ over S is $\{PS : P \in \text{Ass}(M)\}$.
Proof. (a) There is an obvious surjection $R[z] \to (R/P)[z]$. The result follows because $(R/P)[z]$ is a domain, and the kernel is clearly $PR[z]$.

(b) We may localize at $R - P$, which consists of nonzerodivisors on both M and $M[z]$, without affecting the issue, and so we may assume that (R, P, K) is local. Then M has a finite filtration whose factors are copies of K, and since $R[z]$ is R-flat, $M[z]$ has a finite filtration by copies of $K \otimes R[z] = K[z]$. Since Ass $(K[z])$ over S is clearly $PR[z]$, this is also true for $M[z]$.

(c) We have that $N[z] = N_1[z] \cap \cdots \cap N_k[z]$ since flat base change preserves finite intersection. Suppose that N_i is P_i-coprimary. By part (b), $N_i[z]$ is P_iS-coprimary. It remains only to see that the intersection of the $N_j[z]$, omitting $N_i[z]$, is not $N[z]$. This follows from the fact that the intersection of the N_j, omitting N_i, is not N, and the fact that S is faithfully flat over R.

(d) This is immediate from the primary decomposition in part (c). □

Corollary. Let R be a Noetherian ring, let I be an ideal of R with generators f_1, \ldots, f_h, and let M be a finitely generated R-module with $IM \neq M$.

(a) If depth$_1 M \geq 1$ and z_1, \ldots, z_h are indeterminates over R, then $g = z_1 f_1 + \cdots + z_h f_h$ is a nonzerodivisor on $M[z]$ in $IR[z]$.

(b) If depth$_1 M = n$, then for every set of indeterminates z over R, depth$_1 R[z]M[z] = n$. Moreover, if we take z to include indeterminates $z_{i,j}$ where $1 \leq i \leq n$ and $1 \leq j \leq h$ and we let $g_i = z_{i,1} f_1 + \cdots + z_{i,h} f_h$ for $1 \leq j \leq n$, then g_1, \ldots, g_n is a maximal regular sequence in $IR[z]$ on $M[z]$. In particular, we may take $M = R$.

(c) Let R be a finitely generated K-algebra. Let notation be as in part (b). Let $L = K(z)$, the fraction field of $K[z]$, where the indeterminates z include $z_{i,j}$ as in part (b). Let the subscript L indicate the result of applying $L \otimes_K$. Then g_1, \ldots, g_n is a maximal regular sequence in IR_L on M. In particular, if $M = R$, g_1, \ldots, g_n is a maximal regular sequence in R_L.

Proof. (a) If g is a zerodivisor, it is in Ass $(M[z])$, and so it is in $PR[z]$ for some associated prime P of M. This implies that all coefficients occurring are in P, and so $I \subseteq P$, which contradicts depth$_1 M \geq 1$.

Part (b) is simply the iterated use of (a). In part (c), it is clear that the g_1, \ldots, g_n will still be a regular sequence after localization, provided that we still have $IM_L \neq M_L$. This follows from the fact that L is free, and, hence, faithfully flat, over K. □

The Zariski topology on K^n over an infinite field K

Let K be an infinite field. We consider the ring $R = K[x_1, \ldots, x_n]$ of polynomials as a ring of functions on K^n. We note that if a polynomial is nonzero as an element of R, then it yields a nonzero function. In fact, this is true if $n = 1$ because a nonzero polynomial
of degree at most \(n \) has at most \(n \) roots, and \(K \) is infinite. We may use induction on \(n \). A polynomial \(f(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n] \) may be written as a polynomial in \(x_n \) with coefficients in \(K[x_1, \ldots, x_{n-1}] \). If it is nonzero, we can choose a nonzero coefficient \(g(x_1, \ldots, x_{n-1}) \), and by the induction hypothesis we can choose a point \((c_1, \ldots, c_{n-1}) \in K^{n-1} \) such that \(g(c_1, \ldots, c_{n-1}) \neq 0 \). Then \(F(c_1, \ldots, c_{n-1}, x_n) \) is a nonzero polynomial in \(K[x_n] \), and so by the one variable case we can choose \(c_n \) so that it does not vanish for \(x_n = c_n \).

If \(\mathcal{S} \) as any subset of \(R \), we let

\[
\mathcal{V}(\mathcal{S}) = \{(c_1, \ldots, c_n) \in K^n : \text{ for all } f \in \mathcal{S}, \ f(c_1, \ldots, c_n) = 0\},
\]

and we shall say that these sets are closed algebraic sets in \(K^n \). As in the case where \(K \) is algebraically closed, \(\mathcal{V}(\mathcal{S}) \) is the same as \(\mathcal{V}(I) \), where \(I \) is the ideal generated by \(\mathcal{S} \), and it is also the same as \(\mathcal{V}(\text{Rad}(I)) \). However, distinct radical ideals may define the same closed algebraic set.

These sets are, likewise, the closed sets of a topology on \(K^n \) called the Zariski topology. We note that the complement of any proper closed set \(\mathcal{V}(I) \) of \(K^n \) is Zariski dense in \(K^n \). That is, every nonempty Zariski open set in \(K^n \) is dense. To see this, note that we have at least one nonzero polynomial \(f \) in \(I \). If the complement of \(\mathcal{V}(I) \) were a proper closed set, it would be contained in \(\mathcal{V}(g) \) for some nonzero polynomial \(g \). But then the nonzero polynomial \(fg \) vanishes everywhere, a contradiction.

We may view \(G = \text{GL}(n, K) \) as a Zariski open set in \(K^{n^2} \). We may identify an \(n \times n \) matrix with a point of \(K^{n^2} \), and then \(G \) is the complement of the set where the determinant function vanishes. We note that, as in the case of an algebraically closed field, the open subset \(X_f \) of an algebraic set \(X \subseteq K^N \) where a polynomial \(f \) does not vanish may be viewed as closed algebraic set in \(K^{N+1} \): it is in bijective correspondence with the set

\[
\{(c_1, \ldots, c_{N+1}) \in K^{n+1} : (c_1, \ldots, c_N) \in X \text{ and } c_{N+1} = 1/f(c_1, \ldots, c_n)\},
\]

which is the closed set defined by the same polynomials in \(x_1, \ldots, x_N \) that define \(X \) along with the polynomial \(fx_{N+1} - 1 \). The inherited Zariski topologies on \(X_f \subseteq X \) and on the corresponding set in \(K^{N+1} \) are the same.

In particular, we have a Zariski topology on \(\text{GL}(n, K) \), and every nonempty open subset is dense: such a subset is open in \(K^{n^2} \), and hence dense even in \(K^{n^2} \).

We shall write \(B^U_n \) for the subgroup of upper triangular invertible matrices in \(\text{GL}(n, K) \) and \(B^L_n \) for the subgroup of lower triangular invertible matrices. The subscript \(n \) will often be omitted.

Generic initial modules

Let \(R = K[x_1, \ldots, x_n] \) where \(K \) is an infinite field, let \(F \) be a finitely generated free \(R \)-module with ordered basis, and fix a monomial order on \(F \). Let \(M \) be a submodule of \(F \).
Let $A \in \text{GL}(n, K)$. Then $A = (a_{i,j})$ acts on the vector space $[R]_1$ of forms of degree 1 by sending the form $c_1x_1 + \cdots + c_nx_n$ to the form $c_1'x_1 + \cdots + c_n'x_n$ where

$$A \begin{pmatrix} c_1 \\
\vdots \\
c_n \end{pmatrix} = \begin{pmatrix} c_1' \\
\vdots \\
c_n' \end{pmatrix}.$$

This means that the coefficients of $A(x_j)$ are given by the entries of the i th column of the matrix, i.e., $Ax_j = \sum_{i=1}^n a_{i,j}x_i$. This is a left action of $G = \text{GL}(n, K)$ on the vector space of one-forms.

This action extends to an action of $\text{GL}(n, K)$ on R by K-algebra automorphisms, where $A : f \mapsto f(A(x_1), \ldots, A(x_n))$. The action extends also to F in an obvious way by letting $A(f_1e_1 + \cdots + f_se_s) = A(f_1)e_1 + \cdots + A(f_s)e_s$.

We let $A(M)$ denote the image of M under the action of F. We want to prove:

Theorem. There is a Zariski open subset U of $\text{GL}(n, K)$ such that for all $A \in U$, in(AM) is the same monomial module. Moreover, if $Z = (z_{i,j})$ is an $n \times n$ matrix of indeterminates over K, and $L = K(z_{i,j} : i,j)$, so that $Z \in \text{GL}(n, L)$, then in(ZM_L) gives a monomial module containing the same monomials.

Proof. Let g_1, \ldots, g_r be a Gröbner basis for ZM_L containing images for generators of M under Z. We form a finite family of polynomials in $K[Z]$ as follows. We include all denominators of coefficients of the g_r, and all numerators of the coefficients of their initial terms. By the Buchberger criterion, for each i, j there is a standard expression

$$G_{i,j} = \sum_{k=1}^r q_{i,j,k}g_k$$

with remainder 0. We include in our family all denominators of coefficients of the $q_{i,j,k}$ and all numerators of the initial terms of the $q_{i,j,k}g_k$. Let f be the product of all the polynomials in this family. The Gröbner basis and all elements in the expressions (*) have coefficients in $K[Z]_f$. For any matrix $A \in \text{GL}(n, K)_f$, there is a K-homomorphism $K[Z]_f \rightarrow K$ that maps the entries of Z to the corresponding entries of A. This map carries g_1, \ldots, g_r to a Gröbner basis for AM: we may take the images of the expressions in (*), and these show that we have a Gröbner basis by the Buchberger criterion. The monomial initial terms of g_1, \ldots, g_r therefore generate both in(ZM_L) and every in(AM) for $A \in \text{GL}(n, K)_f = U$. □

The common initial module that we have proved to exist is denoted $\text{Gin}(M)$, and called the *generic initial module*. Note that even when K is finite, we can still consider the span in F of the monomial terms in in(ZM_L) as a generic initial module: it becomes one after a base change to any infinite field.