Math 615, Winter 2012
Problem Set #5
Due: Monday, April 16.

1. Let M be a Cohen-Macaulay module of dimension d over a local ring (R, m, K). Let $x = x_1, \ldots, x_d$ be a system of parameters (i.e., a maximum regular sequence) on M, and let $x = x_1$, so that x is a nonzerodivisor on M.
 (a) Prove that $\text{Ext}_R^d(K, M) \cong \text{Ext}_R^{d-1}(K, M/xM)$.
 (b) Prove that $\text{Ext}_R^d(K, M) \cong \text{Hom}_R(K, M/(x)M)$. Hence, the K-vector space dimension of $\text{Hom}_R(K, M/(x)M) \cong \text{Ann}_{M/(x)M}m$ is independent of the choice of system of parameters x_1, \ldots, x_d.
 The positive integer $\dim_K \text{Ext}_R^d(K, M)$ is called the type of M. Also show that the type of M is the same as the type of \hat{M} over \hat{R}.

2. A local ring (R, m, K) that has type 1 as a module over itself is called Gorenstein. Prove if R is regular, then R is Gorenstein, and that if R is Gorenstein, so is $R/(f_1, \ldots, f_k)R$ whenever f_1, \ldots, f_k is part of a system of parameters for R.

3. Let M be a Cohen-Macaulay module of dimension d over a regular local ring (R, m, K) of dimension n. Show that the type of M is the same as the least number of generators of its Ext dual $\text{Ext}_R^{n-d}(M, R)$. (It may be helpful to reduce to the case where Krull dim $M = 0$.)

4. Let $X = (x_{ij})$ denote a 3×2 matrix of indeterminates over a field K, and let R be the polynomial ring in the six variables x_{ij} over the field K. Let m denote the ideal generated by the variables. Let Δ_1, $-\Delta_2$ and Δ_3 be the determinants of the 2×2 matrices obtained by omitting the first, second and third rows of the matrix, respectively, and let Y be the 1×3 matrix $(\Delta_1 \Delta_2 \Delta_3)$, so that $YX = (0)$. Let $P = (\Delta_1, \Delta_2, \Delta_3)\hat{R}$. You may assume that the complex (1) $0 \rightarrow R^2 \xrightarrow{X} R^3 \xrightarrow{Y} R \rightarrow R/P \rightarrow 0$ is exact, and so gives a free resolution of R/P. Let Q be the ideal generated by x_{12}, $x_{11} - x_{22}$, $x_{21} - x_{32}$, and x_{31} in R. Show that the images of these elements form a homogeneous system of parameters for R/P, determine the type of $R_m/P R_m$ in two different ways, and determine the intersection multiplicity of $Z = V(P)$ and $L = V(Q)$ at the origin.

5. Let $R = K[[x, y]]/(xy)$, where K is a field. Determine the minimal first modules of syzygies of R/xR and R/yR. Describe a minimal free resolution of R/xR over R and determine all the Betti numbers of R/xR over R. Find $\text{Tor}_i^R(R/xR, R/yR)$ for all $i \geq 0$.

6. Let $(R, m, K) \rightarrow (S, n, L)$ be a flat local extension such that $\dim S/mS = 0$. Let M be a Cohen-Macaulay module over R. Show $S \otimes_R M$ is Cohen-Macaulay and its type is the product of the type of M and the type of S/mS.

EXTRA CREDIT 9. Prove that the complex described in #4. is exact.

EXTRA CREDIT 10. Use the resolution in #4. to calculate the Hilbert function of R/P. Show that R/P maps as K-algebra onto the Segre product T of the polynomial rings $K[x, y, z]$ and $K[s, t]$ so as to preserve degree. The Hilbert function of T was calculated in an earlier exercise. Conclude from the fact that R/P and T have the same Hilbert function that the map $R/P \rightarrow T$ is an isomorphism.