1. (a) By a class theorem, the first non-vanishing $\text{Ext}_R^1(K, M)$ occurs at the depth of M on m. Thus, $\text{Ext}_R^{d-1}(K, M) = 0$. Therefore, the long exact sequence for Ext coming from $0 \to M \xrightarrow{x} M \to M/xM \to 0$ yields $0 \to \text{Ext}_R^{d-1}(K, M/xM) \xrightarrow{\theta} \text{Ext}_R^d(K, M) \xrightarrow{x} \text{Ext}_R^d(K, M)$. The rightmost map is 0 because x kills K, and so θ is an isomorphism. □

(b) By a straightforward induction k, it then follows that for $1 \leq k \leq d$ that $\text{Ext}_R^d(K, M) \cong \text{Ext}_R^{d-k}(K, M/(x_1, \ldots, x_k)M)$. The stated result is the case $k = d$. □

Since \hat{R} is flat over R, completion commutes with Ext for finitely generated R-modules, from which the final statement follows.

2. If R is regular, we may compute the type as the K-vector space dimension of $R/(x)R = K$, where $x = x_1, \ldots, x_d$ is a minimal set of generators of m (but also, since R is regular, a system of parameters). The result follows. By 1(b)., type does not change when we kill part of a system of parameters: it can simply be computed for both rings after killing the rest of the system of parameters.

3. Replacing M by $M/(x_1, \ldots, x_k)M$ does not change the type nor the minimal number of generators, and replaces M^\vee by $M^\vee/(x_1, \ldots, x_k)M^\vee$. Thus, it suffices to consider the case where M has finite length. Let x_1, \ldots, x_d generate the maximal ideal of R, and consider the map $M \to M^d$ sending $m \mapsto (x_1m, \ldots, x_dm)$. The kernel V is a K-vector space and is evidently $\text{Ann}_M m$. Since $(*) 0 \to V \to M \to M^d$ is an exact sequence of 0-dimensional Cohen-Macaulay modules, applying the exact contravariant functor \mathcal{M}^\vee yields an exact sequence $(M^\vee)^d \to M \to V^\vee \to 0$, where the leftmost map sends (u_1, \ldots, u_d) to $\sum_{i=1}^d x_iu_i$. It follows that $V^\vee \cong M^\vee/mM^\vee$. By Nakayama’s lemma, the K-vector space dimension of the latter is the least number of generators of M^\vee. Thus, the result follows if V and V^\vee have the same dimension. Since \mathcal{M}^\vee commutes with direct sum, it suffices to check this when $V = K$. But $\text{Ext}^d(K, R/(x_1, \ldots, x_d))$ has K-vector space dimension equal to the type of R, which is 1.

4. After killing the elements $f = f_1, f_2, f_3, f_4$ suggested as a homogeneous system of parameters, the matrix has the form \[
\begin{pmatrix}
u & 0 \\
v & u \\
0 & v
\end{pmatrix}
\] where u is the common image of x_{11} and x_{22} and v is the common image of x_{21} and x_{32}. The 2×2 minors are v^2, uv, u^2. Thus, the quotient $B = K[u, v]/(u^2, uv, v^2) \cong K + Ku + Kv$ is Artin. Hence, $\dim(R/P) \leq 4$. But R maps onto the Segre product described in EC10, whose fraction field is $K(xs, ys, zs, ts)$, which has transcendence degree 4. So $\dim R/P = 4$. From the given projective resolution, which has length 2, the depth of $(R/P)_m$ is $6 - 2 = 4$. Thus $(R/P)_m$ is Cohen-Macaulay, and the given homogeneous system of parameters is a regular sequence. From the calculation of the quotient as $K + Ku + Kv$, the dimension of the annihilator of m in the quotient, which is $Ku + Kv$, is 2. So the type is 2. This also follows from the fact that when uses the given resolution to compute $\text{Ext}_R^2(R/P, R) \cong \text{Coker} X^{tr}$, it needs two minimal generators, even after localization at m. Thus, the homogeneous system of parameters is a regular sequence. Finally, the required intersection multiplicity e may be computed from
the Koszul homology $H_i(f; (R/P)_m)$. All of this homology vanishes for $i \geq 1$ since f is a regular sequence. Hence, c is the length of $(R/P)_m/(f) \simeq K + Ku + Kv$, and so is $\frac{3}{2}$.

5. The first module of syzygies of R/xR is $xR \cong R/yR$. One has symmetry here. Hence, the minimal free resolution is $\cdots \to R \xrightarrow{y} R \xrightarrow{y} R \xrightarrow{y} R \to R/xR \to 0$: it is periodic with period 2, the maps are alternately multiplication by y and multiplication by y, and all the Betti numbers are 1. When we omit the augmentation, apply $\otimes_R R/yR$, note that $R/yR = K[[x]]$, and that multiplication by y, and that multiplication by y becomes the 0 map, we obtain the Tors as the homology of $\cdots \to 0 \xrightarrow{y} K[[x]] \xrightarrow{y} K[[x]] \to 0$. It follows that $\text{Tor}_i^R(R/xR, R/yR) \cong K$ if i is even and is 0 if i is odd. (Tor is not rigid in this example.)

6. We may replace R by $R/\text{Ann}_R M$ and S by $S/(\text{Ann}_R M)S$. Let y_1, \ldots, y_h be a system of parameters in R. We may replace M by $M/(y_1, \ldots, y_h)M$. Since S is R-flat, the y_i form a regular sequence on $S \otimes_R M$ as well as on M. Since $\dim S/mS = 0$, n is nilpotent mod m and so it is nilpotent mod $(y_1, \ldots, y_h)S$. Thus, we may assume that R, S are Artin local. Let $(x_1, \ldots, x_d) = m$. Then we have an exact sequence $(*)$ $0 \to V \to M \to M^d$ in $3.$ above, where $V = \text{Ann}_M m$, so that $\dim_K V = t$ is the type of M. Apply $S \otimes_R -$ to obtain an exact sequence (S is R-flat) $0 \to S \otimes_R V \to S \otimes_R M \to (S \otimes M)^d$. Then $\text{Ann}_{S \otimes_R M} m$ may be identified with $V \otimes_R S$, which, since m kills V, may be identified with $N = V \otimes_K (S/mS)$, and N contains the annihilator N' of n in $S \otimes_R M$. Hence, N' may be identified with $\text{Ann}_V \otimes_K (S/mS)n \cong V \otimes_K W$, with $W = \text{Ann}_S_{mS} n$, an L-vector space with $\dim_L W = t'$, where t' is the type of S/mS. Hence, $N' \cong V \otimes_K W \cong K^t \otimes_K L'^t \cong L'^t$. \hfill \ensuremath{\Box}

EXTRA CREDIT 8., continued. One needs that $\text{Hom}_R(C, B) \to \text{Hom}_R(C, C)$ is onto. The issue is local, and we may also complete. Thus, we may assume (R, m) is complete local. For all n, $0 \to N \to A/m^n A \to B/m^n B \xrightarrow{g_n} C/m^n C \to 0$ is exact for a suitable kernel N. The hypothesis implies that the length of $B/m^n B$ is the sum of the lengths of the surrounding modules, which forces N to be 0. For each n, there is a nonempty coset in $\text{Hom}_R(C/m^n C, B/m^n B)$ consisting of maps f such that $g_n \circ f = \text{id}$, because we have already shown there are splittings in the finite length case. The inverse limit W of these cosets is nonempty by a class lemma, and an element of W induces a map of $C \to B$ that splits $B \to C$. \hfill \ensuremath{\Box}

EXTRA CREDIT 9. The only issue that is not straightforward is exactness at the R^3 spot, which says that the columns C_1, C_2 of X span the relations on the Δ_i. Suppose that $f_1 \Delta_1 + f_2 \Delta_2 + f_3 \Delta_3 = 0$. Then $\Delta_1, \Delta_2 \in (x_{31}, x_{32})$, which is prime, and Δ_3 is not in this ideal. Hence, $f_3 = wx_{31} + vx_{32}$. It follows that if f is the column given by the f_i, then $f - uC_1 - vC_2$ has third coordinate 0, so that it is a relation, essentially, on Δ_1 and Δ_2. Since Δ_1 and Δ_2 are relatively prime, this relation is a multiple of the relation $(-\Delta_2)\Delta_1 + (\Delta_1)\Delta_2 + (0)\Delta_3 = 0$, and the result follows because the column of coefficients in this relation is $x_{32}C_1 - x_{31}C_2$. \hfill \ensuremath{\Box}

EXTRA CREDIT 10. The alternating sum of the Hilbert functions of the modules in the resolution is 0. Thus, the $\text{Hilb}_{R/P}(n) = \binom{n+5}{5} - 3\binom{n+3}{5} + 2\binom{n+2}{5}$. Factoring $(n+2)(n+1)/5!$ from each term gives $(n+5)(n+4)(n+3) - 3(n+3)n(n-1) + 2n(n-1)(n-2) = (1-3+2) n^3 + (12-6-6)n^2 + (20+15+12+9+4)n + (60+0+0) = 60(n+1)$, so the Hilbert function is $(n+2)(n+1)^2/2 = \binom{n+2}{2}(n+1)$. \hfill \ensuremath{(Cf. Problem Set #2, 5(a).)}