Faithful Flatness

We shall say that an \(R \)-module \(F \) is \textit{faithfully flat} if it is flat if it is flat and for every nonzero \(R \)-module \(M \), \(F \otimes_R M \neq 0 \). An \(R \)-algebra \(S \) is \textit{faithfully flat} if it is faithfully flat when considered as an \(R \)-module. We shall see below that the completion of a local ring \(R \) is a faithfully flat \(R \)-algebra. Typically, \(W^{-1}R \) is flat but not faithfully flat: if \(W \) contains an element that is not already a unit, say \(f \), then \(W^{-1}R \otimes_R (R/fR) = 0 \). A nonzero free module over \(R \) is obviously faithfully flat.

\textbf{Proposition.} Let \(F \) be an \(R \)-module. The following conditions are equivalent:

1. \(F \) is flat and for every nonzero \(R \)-module \(M \), \(F \otimes_R M \neq 0 \) (i.e., \(M \) is faithfully flat).
2. \(F \) is flat and for every proper ideal \(I \) of \(R \), \(IF \neq F \).
3. \(F \) is flat and for every maximal ideal \(m \) of \(R \), \(mF \neq F \).
4. \(F \) is flat and for every \(R \)-linear map \(h : M \to N \), \(h \) is nonzero if and only if \(\text{id}_F \otimes h : F \otimes_R M \to F \otimes_R N \) is nonzero.
5. For every sequence of modules \(A \to B \to C \), the sequence is exact at \(B \) if and only if the sequence \(F \otimes_R A \to F \otimes_R B \to F \otimes_R C \) is exact at \(F \otimes_R B \).

\textit{Proof.} The conclusion in (2) is equivalent to \(F/IF = F \otimes_R (R/I) \neq 0 \). Therefore, (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3). Now assume (3) and let \(M \) be any nonzero module. Then \(M \) has a nonzero element \(u \). Let \(I = \text{Ann}_R u \), so that \(Ru \cong R/I \). Let \(m \) be a maximal ideal containing \(I \). Since \(IF \subseteq mF \neq F \), we have that \(F \otimes_R R/I \neq 0 \). Since \(R/I \cong Ru \hookrightarrow M \) and \(F \) is flat, we have that \(F/IF \hookrightarrow F \otimes_R M \), so that \(F \otimes_R M \neq 0 \). Thus, (3) \(\Rightarrow \) (1). This shows that (1), (2), and (3) are equivalent.

In (4), the “if” part is obvious. If we apply (4) to the map \(0 \to M \), we see that (4) \(\Rightarrow \) (1). We need to show if (1) holds, the “only if” part of (4) holds. Suppose that \(M \to N \) factors \(M \to Q \hookrightarrow N \), where \(Q \) is the image of \(N \). The map is nonzero if and only if \(Q \neq 0 \). Then \(F \otimes_R M \to F \otimes_R N \) factors \(F \otimes_R M \to F \otimes_R Q \hookrightarrow F \otimes_R N \), where the map on the left is surjective by the right exactness of \(\otimes \), and the map on the right is injective because \(F \) is flat. By (1), we have that \(F \otimes_R Q \neq 0 \).

The fact that “only if” part of (5) holds implies that \(F \otimes_R - \) preserves short exact sequences, which is equivalent to the flatness of \(F \). Therefore, in the rest of the argument we may assume that \(F \) is flat.

To see that (5) is equivalent to the other conditions, let \(f, g \) respectively denote \(A \to B \) and \(B \to C \). Let \(D \) be the image of \(A \) in \(B \). Let \(E \) be the kernel of the map \(B \to C \), and let \(G \) be the image of \(B \in C \). This, we have \(A \to D, D \hookrightarrow B, E \hookrightarrow B, 0 \to E \to B \to G \to 0 \) is exact, and \(G \to C \). Because \(F \) is flat, all these conditions are preserved when apply \(F \otimes_R - \). This means that we may identify the image of \(F \otimes f \) with \(F \otimes_R D \), and the kernel of \(F \otimes g \) with \(F \otimes_R E \). The original sequence is exact at \(B \) if and only if \(D = E \). Obvious, this implies that we have exactness when we apply \(F \otimes_R - \): this only uses that \(F \) is flat. It remains to show that if the images of \(F \otimes D \) and \(F \otimes E \) are
equal in $F \otimes B$, then $D = E$. But if the images are equal, they will both be equal to the image of $F \otimes (D + E)$. Then $F \otimes ((D + E)/D) \cong (F \otimes (D + E))/\text{Im} (F \otimes D) = 0$, which shows that $(D + E)/D = 0$ by (1), and hence that $D + E = D$. But $D + E = E$ follows in exactly the same way. \qed

In the situation of the Corollary below, m is the only maximal ideal of R, and $mS \neq S$ if and only if m maps into n.

Corollary. A flat homomorphism $h : (R, m) \to (S, n)$ of quasilocal rings is faithfully flat if and only if it is local, i.e., if and only if m maps in to n. \qed

Proposition. If M is flat (respectively, faithfully flat) over R and T is any R-algebra, $T \otimes_R M$ is flat (respectively, faithfully flat) over T.

Proof. If $f : A \to B$ is a map of T-modules, we may use the associativity of \otimes to identify $A \otimes_T (T \otimes_R M) \to B \otimes_T (T \otimes_R M)$ with the map $A \otimes_R M \to B \otimes_R M$. Thus, if f is injective, the flatness of M over R implies the new map is injective, while if A is nonzero, so is $A \otimes_T (T \otimes_R M) \cong A \otimes_R M$. \qed

Proposition. If S is a faithfully flat R-algebra and I is an ideal of R, then the contraction of IS to R is I. Moreover, $R \to S$ is injective.

Proof. For any ideal \mathfrak{A} of R, we have an injection $\mathfrak{A} \hookrightarrow R$, which yields an injection $\mathfrak{A} \otimes S \hookrightarrow S$ when we apply $_ \otimes_R S$. The image of the injection is $\mathfrak{A}S$, so that $\mathfrak{A} \otimes_R S \cong \mathfrak{A}S$. If \mathfrak{A} is the kernel of $R \to S$, we then have $\mathfrak{A} \otimes S \cong \mathfrak{A}S = 0$. Since S is faithfully flat, this implies $\mathfrak{A} = 0$. This proves the second statement. But then for every I, the preceding result shows that $R/I \to S/IS$ is faithfully flat (take $M = S$, $T = R/I$), and so injective. The kernel is J/I, where J is the contraction of IS to R, and so $J = I$. \qed

Corollary. If $R \to S$ is faithfully flat, then $\text{Spec} (S) \to \text{Spec} (R)$ is surjective.

Proof. For every prime P of R, the contraction of PS to R is P, which means that PS is disjoint from the image W of $(R - P)$ in S, which is a multiplicative system. Hence, there is a prime Q of S that contains PR and is disjoint from W, and Q must contract to P. \qed

Proposition. Let $(R, m) \to (S, n)$ be a flat local homomorphism of local rings. Then $\dim (S) = \dim (R) + \dim (S/mS)$. ($S/mS$ is called the closed fiber of $R \to S$.)

Proof. We use induction on $\dim (R)$. If $J = \text{Rad} (0)$ in R, $R/J \to S/JS$ is again flat and local, and, since both J and JS consist of nilpotents, the dimensions do not change (note that the closed fiber also has not changed.) Therefore, we may assume that R is reduced. If $\dim (R) = 0$, then R is a field, $m = 0$, and $S/mS \cong S$, so the result is clear. Otherwise, m is not contained in the union of the minimal primes of R: choose $x \in m$ not in any minimal prime. Since R is reduced, every associated prime of (0) is minimal. Hence, x is not a zerodivisor in R. Since $R \xrightarrow{x} R$ is injective, when we apply $S \otimes_R _$ we obtain an injection $S \xrightarrow{x} S$. Thus, $\dim (R/xR) = \dim (R) - 1$, and $\dim (S/xS) = \dim (S) - 1$. But $R/xR \to S/xS$ is still flat local with the same closed fiber. By the induction hypothesis, $\dim (S) - 1 = \dim (R) - 1 + \dim (S/mS)$ and the result follows. \qed