1. Let \(q = p^n = 4h + t_n \), where \(t_n \) is 1 or 3. Then \((z^3)^q = (z^3)^{4h+t_n} = (z^4)^h z^{3t_n} = \pm(w^4 + x^4 + y^4)^{3h}z^{3t_n}\). When we expand, at least one of the exponents on \(u \) or \(v \) or \(w \) is 4h. Hence, taking \(c = (uvw)^3 \) (not the most efficient choice), we have that \(c(z^3)^q \in (u, v, w)[q] \), since \(4h + 3 \geq q \), and so \(z^3 \in (w, x, y)^* \). If \(q = p \) and \(t_1 = 1 \), \(z^{3p} = (w^4 + x^4 + y^4)^{3h}z^3 \), and 1, z, z^2, z^3 is a free basis for \(R \) over the polynomial ring \(K[w, x, y] \). Every term in the expansion is in \((w^q, x^q, y^q) \) except \((3h)w^h x^4 y^4 z^3 \), and so \(z^p \notin I[v] \). If \(q = p \) and \(t_1 = 3 \), \(z^{3p} = z^{12h+9} = (z^4)^{3h+2}z = \pm(w^4 + x^4 + y^4)^{3h+2}z \). When we expand, at least one of the exponents on \(w^4, x^4 \), or \(y^4 \) is at least \(h+1 \), and \(4(h+1) \geq p \), so that every term is in \(I[v] \). Hence, \(z^p \in I[v] \) if and only if \(p \equiv 3 \) mod \(4 \).

2. Since \(K[x_1, \ldots, x_n] \) is module-finite over \(R(d) \), we need to find \(\lim_{d \to \infty} S_{n, d, t, q}/d^n \), where \(S(n, d, t, q) \) is the number of choices \((a_1, \ldots, a_n) \in \mathbb{N}^n \) for the exponents on the variables such that \(d|\sum_{j=1}^n a_j \) and \(\sum_{j=1}^n [a_i/q] < dt \) (\([\cdot] \) denotes integer part). The number of choices for the \(b_i = [a_i/q] \) is the number of monomials of degree less than \(dt \) in \(x_1, \ldots, x_n \), which is \((d^{t-n}) \). Once the \(b_i \) are known, one must choose a remainder \(r_i \) in \(\{0, 1, \ldots, q-1\} \) for every \(i \), \(1 \leq i \leq n \): moreover, the sum of the \(a_i \) must be divisible by \(d \). The first \(n - 1 \) of the \(r_i \) can be chosen in \(q^{n-1} \) ways. For the last, there is an additional restriction: the residue of \(n \) mod \(d \) must be \(r \) mod \(d \) where \(0 \leq r < d-1 \) where \(d \) depends on the \(b_i \) and \(q \). This limits the choices to \(r, r + d, r + 2d, \ldots, r + \left[\frac{q-1-r}{d}\right]d \), i.e., there are \(\left[\frac{q-1-r}{d}\right] + 1 \) choices. This is \(\frac{q-1-r}{d} \geq \frac{q}{d} - 1 \), and at most \(\frac{q-1-r}{d} + 1 \leq \frac{q}{d} + 1 \), so the number of choices is \(\frac{q}{d} \) with an error of at most \(1 \). If the average value of the error over the various choices is \(e_q \), we have the limit of \((d^{t-1+n})(q^{n-1})(q_d + e_q)/q^n = (d^{t-1+n})(\frac{1}{d} + e_d)\) as \(q \to \infty \). Since \(|e_q| \leq 1 \), the Hilbert-Kunz multiplicity is \((d^{t-1+n})/d\).

3. If \(f \in IS \cap R \) then for all \(q = p^n \), \(f^q \in I[q] \cap S \cap R \), and when we apply \(\theta \) we obtain that \(f^q/\theta(1) \in I[q] \). Since \(c = \theta(1) \neq 0 \), \(f \in I^* \).

4. If \(f \in I^* \) we have \(c \) nonzero such that \(cu^q \in I[q] \) for all \(q \gg 0 \), where \(q = p^n \). Hence, \(c(u^p)^q = cu^p \in I[q] \) for all \(q \gg 0 \), which shows that \(u^p \in (I[q])^* \). Hence, \((I^*)[p^n] \subseteq (I[p^n])^* \).

5. By 4., if \(f \in I^* \) then for all \(n \), \(f^{[p^n]} \in (I[p^n])^* \), and the defining property of \(c \) then implies that \(cf^{[p^n]} \in (I[p^n])^* \).

6. Let \(f \in I^* \) for \(I \subseteq R \), and \(c \in \tau(S) \cap R \). It suffices to show that \(cf \in I \). But since \(R \subseteq S \) are domains, \(f \in (IS)^* \), and so \(cf \in IS \). Since \(c, f \in R \), this implies \(cf \in IS \cap R = I \), as required.

EC 9. Suppose \(f \in I^* \) but that \(cf \notin I^F \). We can choose \(m \) maximal such that \(cf \notin I^F R_m \): we still have \(f \in (IR_m)^* \) in \(R_m \). Note that \(I^F R_m = (IR_m)^F \subseteq \) is clear. If \(r/w \in (IR_m)^F \), with \(w \in R - m \), we can choose \(q \) such that \((r/w)^q \in (IR_m)^q = I[q] R_m \) and so \((r/w)^q = j/v \) with \(j \in I[q] \) and \(v \in R - m \). \(n (rv)^q \in u^qv^{q-1}I[q] \) in \(I[q] m \) and so \(rv \in I[q] \), and so \(r/w = rv/wv \in I[q] R_m \), as required.) Choose a power \(Q \) of \(p \) with \(Q \geq N_m \). Since \(f \in (IR_m)^* \), \(f^Q \in ((IR_m)^{[Q]})^* \), by Problem 5. Since \(c^Q \in \tau(R_m) \), we then have that \((cf)^Q = c^Q f^Q \in (IR_m)^{[Q]} \), and so \(cf \in (IR_m)^F = I^F R_m \), a contradiction.
EC 10. Suppose that $s = \deg(G) > \delta = \sum_{h=1}^{d} \deg(F_h)$ has maximum degree among the elements of R that are nonzero mod $I = (F_1, \ldots, F_d)$ (there will exist such a form because the homogeneous maximal ideal is nilpotent mod I). Then for all $q = p^m$, we have $G^q \notin (F_1, \ldots, F_d)^{[q]} = I^{[q]}$, or else G would be in $I^* = I$. We must have $G(F_1, \ldots, F_d) \subseteq I^{[q]}$ (or some GF_j form of higher degree not in $I^{[q]}$). Then $G \in (F_1^q, \ldots, F_d^q) : R(F_1, \ldots, F_d) = I^{[q]} + F^{q-1}R$ where $F = F_1 \cdots F_d$ has degree δ. Hence, we can replace G by a homogeneous element of the form $F^{q-1}D$, where D is a form of R that is not in I, and so $\deg(D) \leq s$. Hence, $\deg(G) = (q - 1)\delta + \deg(D) \geq qm$. Since $\deg(D) \leq s$, $(q - 1)\delta + s \geq qs$, which shows that $(q - 1)\delta \geq (q - 1)s$ and so $\delta \geq s$, as required. □