LOCAL COHOMOLOGY

by Melvin Hochster

These are lecture notes based on seminars and courses given by the author at the University of Michigan over a period of years. Their objective is to give a treatment of local cohomology that is quite elementary, assuming, for the most part, only a modest knowledge of commutative algebra. There are some sections where further prerequisites, usually from algebraic geometry, are assumed, but these may be omitted by the reader who does not have the necessary background.

Throughout, all given rings are assumed to be commutative, associative, with identity, and all modules are assumed to be unital. By a local ring \((R, m, K)\) we mean a Noetherian ring \(R\) with a unique maximal ideal \(m\) and residue field \(K = R/m\).

1. ESSENTIAL EXTENSIONS AND INJECTIVE HULLS

(1.1) Definition-Proposition. If \(R\) is a ring, a homomorphism of \(R\)-modules \(h : M \to N\) is called an essential extension if it is injective and the following equivalent conditions hold:

(a) Every nonzero submodule of \(N\) has nonzero intersection with \(h(M)\).

(b) Every nonzero element of \(N\) has a nonzero multiple in \(h(M)\).

(c) If \(\phi : N \to Q\) is a homomorphism and \(\phi h\) is injective then \(\phi\) is injective.

Proof. (a) and (b) are equivalent because a nonzero submodule of \(N\) will always have a nonzero cyclic submodule (take the submodule generated by any nonzero element). If (a) holds and \(\text{Ker } \phi\) is not zero it will meet \(h(M)\) in a nonzero module. On the other hand if (c) holds and \(W \subseteq N\) is any submodule, let \(\phi : N \to N/W\). If \(W\) is not zero, this map is not injective, and so \(\phi h\) is not injective, which means that \(W\) meets \(h(M)\). \(\square\)
(1.2) Proposition. Let M, N, and Q be R-modules.

(a) If $M \subseteq N \subseteq Q$ then $M \subseteq Q$ is essential if and only if $M \subseteq N$ and $N \subseteq Q$ are both essential.

(b) If $M \subseteq N$ and $\{N_i\}_i$ is a family of submodules of N each containing M such that $\bigcup_i N_i = N$, then $M \subseteq N$ is essential if and only if $M \subseteq N_i$ is essential for every i.

(c) The identity map on M is an essential extension.

(d) If $M \subseteq N$ then there exists a maximal submodule N' of N such that $M \subseteq N'$ is essential.

Proof. (a), (b) and (c) are easy exercises. (d) is immediate from Zorn’s lemma, since the union of a chain of submodules of N containing M each of which is an essential extension of M is again an essential extension of M. □

(1.3) Example. Let R be an integral domain. The fraction field of R is an essential extension of R, as R-modules.

(1.4) Example. Let (R, m, K) be a local ring and let N be an R-module such that every element of N is killed by a power of m. Thus, every finitely generated submodule of N has finite length. Let $\text{Soc} N$, the socle of N, be $\text{Ann}_{N}m$, the largest submodule of N which may be viewed as a vector space over K. The $\text{Soc} N \subseteq N$ is an essential extension. To see this, let $x \in N$ be given nonzero element and let t be the largest integer such that $m^t x \neq (0)$. Then we can choose $y \in m^t$ such that $yx \neq 0$. Since $m^{t+1} x = 0$, $my \subseteq mm^t x = 0$, and so $y \in \text{Soc} M$. (Exercise: show that if $S \subseteq N$ is any submodule such that $S \subseteq N$ is an essential extension, then $\text{Soc} N \subseteq S$.)

(1.5) Exercise. Show that if $M_i \subseteq N_i$ is essential, $i = 1, 2$, then $M_1 \oplus M_2 \subseteq N_1 \oplus N_2$ is essential. Generalize this to arbitrary (possibly infinite) direct sums.

In the situation of Proposition (1.2d) we shall say that N' is a maximal essential extension of M within N. If $M \subseteq N$ is an essential extension and N has no proper essential extension we shall say that N is a maximal essential extension of M. It is not clear that maximal essential extensions in the absolute sense exist. However, they do exist: we shall deduce this from the fact that every module can be embedded in an injective module.

(1.6) Proposition. Let R be a ring.

(a) An R-module is injective if and only if it has no proper essential extension.
(b) If M is an R-module and $M \subseteq E$ with E injective, then a maximal essential extension of M within E is an injective module and, hence, a direct summand of E. Moreover, it is a maximal essential extension of M in an absolute sense, since it has no proper essential extension.

(c) If $M \subseteq E$ and $M \subseteq E'$ are two maximal essential extensions of M, then there is a (non-canonical) isomorphism of E with E' that is the identity map on M.

Proof. (a) It is clear that an injective R-module E cannot have a proper essential extension: if $E \subseteq N$ then $N \cong E \oplus E'$, and nonzero elements of E' cannot have a nonzero multiple in E. It follows that $E' = 0$. On the other hand, suppose that M has no proper essential extension and embed M in an injective module E. By Zorn’s lemma we can choose $N \subseteq E$ maximal with respect to the property that $N \cap M = 0$. Then $M \subseteq E/N$ is essential, for if N'/N were a nonzero submodule of E/N that did not meet M then $N' \subseteq E$ would be strictly larger than N and would meet M in 0. Thus, $M \rightarrow E/N$ is an isomorphism, which implies that $E = M + N$. Since $M \cap N = 0$, we have that $E = M \oplus N$, and so M is injective.

(b) Let E' be a maximal essential extension of M within the injective module E. We claim that E' has no proper essential extension whatsoever, for if $E' \subseteq Q$ were such an extension the inclusion $E' \subseteq E$ would extend to a map $Q \rightarrow E$, because E is injective. Moreover, the map $Q \rightarrow E$ would have to be injective, because its restriction to E' is injective and $E' \subseteq Q$ is essential. This would yield a proper essential extension of E' within E, a contradiction. By part (a), E' is injective, and the rest is obvious.

(c) Since E' is injective the map $M \subseteq E'$ extends to a map $\phi : E \rightarrow E'$. Since $M \subseteq E$ is essential, ϕ is injective. Since $E \cong \phi(E) \subseteq E'$, $\phi(E)$ is injective and so $E' = \phi(E) \oplus E''$. Since $M \subseteq E'$ is essential and $M \subseteq \phi(E)$, E'' must be zero. □

If $M \rightarrow E$ is a maximal essential extension of M over R we shall also refer to E is an injective hull or an injective envelope for M and write $E = E_R(M)$ of $E = E(M)$. Note that every R-module M has an injective hull, unique up to non-canonical isomorphism. Note also that if $M \subseteq E$, where E is any injective, then M has a maximal essential extension E_0 within E that is actually a maximal essential extension of M. Thus, $M \subseteq E$ will factor $M \subseteq E(M) \subseteq E$, and then $E(M)$ will split off from E, so that we can think of E as $E(M) \oplus E'$, where E' is some other injective.

(1.7) Exercise. Using (1.5), show that there is an isomorphism $E(M_1 \oplus M_2) \cong E(M_1) \oplus E(M_2)$. (The corresponding statement for infinite direct sums is false in general, because
a direct sum of injective modules need not be injective. However, it is true if the ring is Noetherian.)

(1.8) Discussion. Given an R-module M we can form an injective resolution as follows: let $E_0 = E(M)$, let $E_1 = E(E_0/\text{Im }M)$, let $E_2 = E(E_1/\text{Im }E_0)$, and, in general, if

$$0 \to E_0 \to E_1 \to \cdots \to E_i$$

has been constructed (with $M = \text{Ker } (E_0 \to E_1)$), let $E_{i+1} = E(E_i/\text{Im }E_{i-1})$. Note that we have $E_i \to E_i/(\text{Im }E_{i-1}) \subseteq E_{i+1} = E(E_i/\text{Im }E_{i-1})$ so that we get a composite map $E_i \to E_{i+1}$ whose kernel is $\text{Im }E_{i-1}$. It is evident that this yields an injective resolution of M.

We shall say that a given injective resolution

$$0 \to E_0 \to \cdots \to E_i \to \cdots$$

(with $M = \text{Ker } (E_o \to E_1)$) is a minimal injective resolution of M if $M \to E_0$ is an injective hull for M and if for every $i \geq 0$, $\text{Im } (E_i \to E_{i+1}) \subseteq E_{i+1}$ is an injective hull for $\text{Im } (E_i \to E_{i+1})$. The discussion just above shows that minimal injective resolutions exist. It is quite easy to see that any two minimal injective resolutions for M are isomorphic as complexes.

2. THE NOETHERIAN CASE

(2.1) Proposition. Let M be a finitely generated R-module and let $\{N_i\}_i$ be a possibly infinite family of modules. Then $\text{Hom}_R(M, \bigoplus_i N_i) \cong \bigoplus_i \text{Hom}_R(M, N_i)$. (In general, there is an injection of the right hand side into the left hand side.)

Proof. Each inclusion $N_j \subseteq \bigoplus_i N_i$ induces a map $\text{Hom}_R(M, N_j) \subseteq \text{Hom}_R(M, \bigoplus_i N_i)$. It is easy to see that the various submodules of $\text{Hom}_R(M, \bigoplus_i N_i)$ obtained in this way have the property that their sum inside $\text{Hom}_R(M, \bigoplus_i N_i)$ is actually a direct sum. This explains the injection $\bigoplus_i \text{Hom}_R(M, N_i) \subseteq \text{Hom}_R(M, \bigoplus_i N_i)$. We want to see that the map is onto. Let m_1, \cdots, m_h generate M. Let $\phi : M \to \bigoplus_i N_i$. Then each $\phi(m_\nu)$ has nonzero entries in only finitely many N_i. It follows that there is a finite set of indices $i(1), \cdots, i(r)$ such that every $\phi(m_\nu) \subseteq \bigoplus_{s=1}^r N_{i(s)} \subseteq \bigoplus_i N_i$, and then $\phi(M) \subseteq \bigoplus_{s=1}^r N_{i(s)}$. Since $\text{Hom}_R(M, _)$ commutes with finite direct sums, the result follows. □
(2.2) Corollary. Let R be a Noetherian ring. Then an arbitrary (possibly infinite) direct sum of injective modules is injective.

Proof. Call the family $\{E_i\}$. It suffices to show that if I is an ideal of R, then

$$\text{Hom}(R, \bigoplus_i E_i) \rightarrow \text{Hom}(I, \bigoplus_i E_i)$$

is surjective. Using (2.1), it is easy to see that this is the direct sum of the maps $\text{Hom}(R, E_i) \rightarrow \text{Hom}(I, E_i)$, each of which is surjective. □

When R is Noetherian we shall write $\text{Ass} M$ for

$$\{P \in \text{Spec} R : R/P \text{ can be embedded in } M\}$$

whether M is finitely generated or not. If $M \neq 0$, $\text{Ass} M$ is nonempty, since it contains $\text{Ass} Rx$ for every nonzero element $x \in M$.

(2.3) Proposition. Let E be any injective module over a Noetherian ring R. Then E is a direct sum of modules each of which has the form $E_R(R/P)$ for some prime ideal P of R.

Proof. Choose a maximal family $\{E_i\}_i$ of submodules $E_i \subseteq E$ such that (1) each $E_i \cong E(R/P_i)$ for some prime ideal P_i of R, and (2) the sum of the E_i in E is an internal direct sum (i.e., each E_i is disjoint from any finite sum of other E_j). Such a family exists by Zorn’s lemma (it might be the empty family). Let E_1 be the sum of the modules in the family, which has the form we want. We want to prove that $E = E_1$. We know that E_1 is injective, by (2.2). Thus, we can write $E = E_1 + E'$, where the sum is an internal direct sum. We shall show that if $E' \neq 0$ then it has a submodule E'' of the form $E(R/P)$. This will yield a contradiction, since E'' can evidently be used to enlarge the supposedly maximal family $\{E_i\}_i$. Suppose that $x \in E' - \{0\}$. Then $Rx \neq 0$ is a finitely generated nonzero module: choose $P \in \text{Ass} Rx$, so that we have embedding $R/P \subseteq Rx \subseteq E'$. Then we also have $E(R/P) \subseteq E'$, as wanted. □

We shall soon prove a uniqueness statement for decompositions of injective modules as in (2.3). We first want to study the modules $E(R/P)$ more closely.
(2.4) Theorem. Let R be a Noetherian ring and let P be a prime ideal. Let E denote an injective hull for R/P.

(a) The set of all elements in E that are killed by P is isomorphic with the fraction field F of R/P; $F \cong R_P/PR_P$.

(b) Multiplication by an element of $R - P$ is an automorphism of E. Thus E has, in a unique way, the structure of an R_P-module.

(c) E is a maximal essential extension of F (as described in part (a)) over R_P. Thus, E is also an injective hull for F over R_P. We may abbreviate these facts by writing $E_R(R/P) \cong E_{R_P}(R_P/PR_P)$.

(d) Every element of E is killed by a power of P, and $\text{Ass} E = \{P\}$. The annihilator of every nonzero element of E is primary to P.

(e) $\text{Hom}_{R_P}(F, E_P) \cong F$, while for any prime ideal Q of R different from P, we have that $\text{Hom}_{R_P}(F, E(R/Q)_P) = 0$.

Proof. Since $R/P \subseteq F$ is an essential extension, we have a copy of F in the maximal essential extension E, and we may also view $E = E_R(F)$. Let $a \in R - P$. Since multiplication by a is injective on F, it is injective on E, for E is an essential extension of F. Then aE is an injective submodule of E containing F, and will split off. Since E is an essential extension of F, we must have $aE = E$. Thus, E is a module over R_P, and contains a copy of $F \cong R_P/PR_P$. The annihilator of P in E will then be the same as the annihilator of PR_P in E, and so may be regarded as an F-vector space V, with $F \subseteq V \subseteq E$. Since E is an essential extension of F, so is V. But this is impossible unless $V = F$, since $F \subseteq V$ will split over F (and, hence, over R_P). This establishes both (a) and (b).

It is clear that $F \subseteq E$ is essential as a map of R_P-modules, since this is true even as a map of R-modules. Suppose that E has an essential extension M as an R_P-module. Let $x \in M$ be any nonzero element. Then we can choose $r \in R$, $a \in R - P$ and $e \in E$ such that $(r/a)x = e \neq 0$ in E. Then $rx = ae \neq 0$ by (b). Thus $E \subseteq M$ is an essential extension as R-modules as well, and so $E = M$, as required. This proves (c).

Now suppose that $R/Q \subseteq E$. Let x be a nonzero element of E such that $\text{Ann} x = Q$, i.e., $Rx \cong R/Q$. Supposedly, x has a nonzero multiple in R/P. But every nonzero element in R/Q has annihilator Q, while every nonzero element in R/P has annihilator P. This yields a contradiction. Thus, $\text{Ass} E = \{P\}$. Now, if $x \in E$, let $I = \text{Ann} x$. Then $R/I \cong Rx \subseteq E$, and so $\text{Ass}(R/I) \subseteq \text{Ass} E = \{P\}$. Thus, P is the only associated prime of I, which implies that I is primary to P. This establishes (d).
For the first statement in part (e), note that $E_P \cong E$. Any value of a homomorphism of F into E must be killed by P, and so must lie in $\text{Ann}_E P \cong F$. Thus, $\text{Hom}_{R_P}(F, E) \cong \text{Hom}_{R_P}(F, F) \cong F$.

Now suppose that $Q \neq P$. If P does not contain Q we have that $E(R/Q)_P = 0$, since the element of Q that is not in P acts invertibly on $E(R/Q)_P$ while, at the same time, for each element of $E(R/Q)_P$ it has a power that kills that element. If $Q \subset P$ strictly, note that a nonzero element of the image of a map of F into E_P must be killed by P. This will yield an element of $\text{Ass } E_P$ that is a prime containing P. But the annihilator of each element will be QR_P-primary. □

(2.5) Exercise. Show that if $M \subseteq N$ is essential then $\text{Ass } M = \text{Ass } N$.

(2.6) Theorem. Let E be an injective module over a Noetherian ring R. Let P be a prime ideal of R and let F be the fraction field of $R/P \cong R_P/PR_P$. Then the number of copies of $E(R/P)$ occurring in a representation of E as direct sum of modules of this form is $\dim_P \text{Hom}_{R_P}(F, E_P)$, and so is independent of which such representation we choose. $E(R/P)$ occurs if and only if $P \in \text{Ass } E$.

Proof. Suppose that $E = \bigoplus_i E(R/P_i)$. Then

$$\text{Hom}_{R_P}(F, E_P) \cong \text{Hom}_{R_P}(F, \bigoplus_i E(R/P_i)_P) \cong \bigoplus_i \text{Hom}_{R_P}(F, E(R/P_i)_P).$$

Now $\text{Hom}_{R_P}(F, E(R/P_i)_P)_P \cong F$ if $P_i = P$ and is 0 otherwise. Thus, if J_P is the set of values for i such that $P_i = P$, then $\text{Hom}_{R_P}(F, E_P) \cong \bigoplus_{i \in J_P} F$, a vector space over F whose dimension is the number of copies of $E(R/P)$ occurring in the decomposition, as required.

The final statement is left as an exercise. □

(2.7) Corollary. A nonzero injective module over a Noetherian ring R is indecomposable (not a direct sum in a non-trivial way) if and only if it isomorphic with $E(R/P)$ for some prime P.

Proof. If $E(R/P)$ were the direct sum of two nonzero modules, these would be injective, and so decompose further into direct sums of modules of the form $E(R/Q)$. This would give two different representations for $E(R/P)$ as a direct sum of modules of the form $E(R/Q)$, one with only one term, and one with at least two terms, a contradiction. Since every injective is a direct sum of modules of the form $E(R/P)$, the only possible indecomposable injective modules are the modules $E(R/P)$ themselves. □
We therefore have a bijective correspondence between the prime ideals of a Noetherian ring R and the isomorphism classes of indecomposable injective modules, where P corresponds to the isomorphism class of $E_R(R/P)$. We also note:

(2.8) **Theorem.** Let R be a Noetherian ring and let S be a multiplicative system.

(a) The injective modules over $S^{-1}R$ coincide with the injective R-modules E with the property that for every $E(R/P)$ occurring as a summand (i.e. for every $P \in \text{Ass } E$), P does not meet S.

(b) If E is any injective R-module then $S^{-1}E$ is an injective $S^{-1}R$-module.

(c) If $M \subseteq N$ is essential then $S^{-1}M \subseteq S^{-1}N$ is essential. If $M \subseteq E$ is a maximal essential extension then $S^{-1}M \subseteq S^{-1}E$ is a maximal essential extension.

Proof. Each indecomposable injective module over $T = S^{-1}R$ has the form $E_T(T/Q)$, where Q is a prime of T. Note that $T_Q \cong R_P$, where P is the unique prime ideal of R whose expansion is Q (it is also true that P is the contraction of Q: expansion and contraction give bijections between the primes in Spec R disjoint from S and Spec T). But then $E_T(T/Q) \cong E_{T_Q}(T_Q/QT_Q) \cong E_{R_P}(R_P/PR_P) \cong E_R(R/P)$. Thus, the indecomposable injectives over T are precisely the modules $E_R(R/P)$ for P in Spec R disjoint from S. This proves (a).

For part (b), since E will be a direct sum of indecomposable injectives, we may assume that $E = E_R(R/P)$. If S does not meet P then $S^{-1}E \cong E$, while if S meets P then, since every element of $E = E_R(R/P)$ is killed by a power of P, we have that $S^{-1}E = 0$. This proves (b).

Now suppose that $M \subseteq N$ is essential. Let $x/s \in S^{-1}N$, $x \in N$, $s \in S$, be nonzero. Then $x/1$ is the same element, up to a unit. We may replace $x/1$ by a multiple whose annihilator is a prime ideal Q of $S^{-1}R$, and we then have that $Q = PS^{-1}R$ where P is the contraction of Q to R. After replacing x by $s'x$ for suitable $s' \in S$ we may assume that x is killed by P. It follows that Ann $x = P$, where P is disjoint from S. Let rx be a nonzero multiple of x in M. The rx is also a nonzero element of $R/P \cong Rx$, and so Ann $rx = P$. It follows that the image of rx in $S^{-1}M$ is not zero, and this proves the first statement. If we couple this result with (b) we obtain the final statement. □

(2.9) **Theorem.** Let M be a finitely generated module over a Noetherian ring R, and let $0 \to E_0 \to \cdots \to E_i \to \cdots$ denote a minimal injective resolution of M (so that $M = \text{Ker } (E_0 \to E_1)$). Then for every prime P of R, the number of copies of $E(R/P)$ occurring in E_i is finite: in fact, if $F = R_P/PR_P$, this number is equal to $\dim_F \text{Ext}^i_{R_P}(F,M_P)$.
(This number is sometimes denoted $\mu_i(P, M)$ and called the ith Bass number of M with respect to P).

Proof. If we localize at P we obtain a minimal resolution of M_P over R_P, by (2.7c). In this way we reduce to the case where P is the maximal ideal of a local ring (R, P, F) with residue field F: the number of copies of $E(R/P)$ is unaffected. In this situation, the number of copies of $E(F)$ in E_i is precisely $\dim_F \operatorname{Hom}_R(F, E_i)$. On the other hand, the modules $\operatorname{Ext}^i_R(F, M)$ are the homology of the complex $\operatorname{Hom}_R(F, E_.)$. Thus, to prove the result it suffices to show that all the maps in the complex $\cdots \rightarrow \operatorname{Hom}_R(F, E_i) \rightarrow \cdots$ are zero. Now $\operatorname{Hom}_R(F, E_i) \cong \text{Ann}_{E_i} P$ is a vector subspace of E_i: each element in it is contained in a copy of $F \subseteq E_i$. It therefore suffices to see that this copy of F must be zero, i.e., that it must be in $\text{Im } E_{i-1}$ (where $E_{-1} = M$). But a generator of that copy of F has a nonzero multiple in $\text{Im } E_{i-1}$, since $\text{Im } E_{i-1} \subseteq E_i$ is essential. Since any nonzero element of F generates it as an R-module, it follows that the entire copy of F is in $\text{Im } E_{i-1}$ and, hence, maps to zero in E_{i+1}. □

3. THE INJECTIVE HULL OF THE RESIDUE FIELD OF A LOCAL RING

We have already seen that, in a certain sense, understanding the injective modules over a Noetherian ring R comes down to understanding the injective hulls $E_R(R/P) \cong E_{R_P}(R/P/PR_P)$. Thus, we are led to consider what the injective hull of the residue field of a local ring (R, m, K) is like. We already know that every element of $E(K)$ is killed by a power of the maximal ideal of R, so that $\text{Ass } E(K) = \{m\}$. Any module M with the property that every element is killed by a power of m is automatically a module over \hat{R} (the m-adic completion of R): if $x \in M$ is killed by m^t and $s \in \hat{R}$ we let sx be the same as rx, where r is any element of R such that $s-r \in m^t \hat{R}$. In fact, if M is such a module then its R-submodules are the same as its \hat{R}- submodules (all submodules and quotients inherit the same property) and if M, N are two such modules then $\operatorname{Hom}_R(M, N) = \operatorname{Hom}_{\hat{R}}(M, N)$. Every such module over \hat{R} may be viewed as arising from itself considered as an R-module via restriction of scalars. This leads to:

(3.1) Theorem. Let (R, m, K) be a local ring. A maximal essential extension of K over R is also a maximal essential extension of K over \hat{R}. I.e., $E_R(K) \cong E_{\hat{R}}(K)$.
Proof. It is clear that $E_R(K)$ viewed as an \hat{R}-module then W still has the property that every element is killed by a power of $m\hat{R}$, and, hence, of m. Since the R-modules and the \hat{R}-submodules of W are the same, W is an essential extension of $E_R(K)$ as an R-module. Thus, $W = E_R(K)$, as required. □

This means that it suffices to “understand” $E_R(K)$ when (R, m, K) is a complete local ring.

We recall:

(3.2) Lemma. If $R \rightarrow S$ is a ring homomorphism, E is injective over R, and F is S-flat, then $\text{Hom}_R(F, E)$ (which has an S-module structure induced by the S-module structure on F) is an injective S-module. In particular, if E is an injective R-module, then $\text{Hom}_R(S, E)$ is an injective S-module.

The point is that the functors (from S-modules to S-modules) $\text{Hom}_R(_, \text{Hom}_R(F, E))$ and $\text{Hom}_S(_, \otimes_S F, E)$ are isomorphic, by the adjointness of \otimes andHom. Since $_, \otimes_S F$ and $\text{Hom}_R(_, E)$ are both exact functors, so is the composite $\text{Hom}_R(_, \otimes_S F, E)$, and this implies that $\text{Hom}_S(_, \text{Hom}_R(F, E))$ is an exact functor, which means that $\text{Hom}_R(F, E)$ is S-injective. (This is how one embeds an arbitrary R-module M in an injective: let W be the injective \mathbb{Z}-module \mathbb{Q}/\mathbb{Z} (over a PID, a module is injective if it is divisible), map a free R-module F onto M^\vee, where $^\vee = \text{Hom}_\mathbb{Z}(_, W)$, and so obtain a composite injection $M \rightarrow M^{\vee\vee} \rightarrow F^{\vee}$. F^{\vee} is R-injective by the lemma above.) This lemma suggests a useful transition between injective hulls of residue fields when one has a local homomorphism.

(3.3) Theorem. Let $(R, m, K) \rightarrow (S, n, L)$ be a local homomorphism of local rings and suppose that S is module-finite over the image of R. Let E be an injective hull of K over R. Then $\text{Hom}_R(S, E)$ is an injective hull of L over S.

Proof. First note that mS will be n-primary. If we fix $\phi \in \text{Hom}_R(S, E)$ then each of its values on the finitely many generators of S will be killed by a power of m. It follows that ϕ is killed by a power of m, hence by a power of mS, and so by a power of n. By the preceding lemma, $\text{Hom}_R(S, E)$ is S-injective, and since every element is killed by a power of n it must be a direct sum of copies of the injective hull of $L = S/n$ over S. It remains to see that there is only on copy, for which we need only show that $\text{Hom}_S(S/n, \text{Hom}_R(S, E))$ is one-dimensional as a vector space over L. As in the proof of (3.2) this module is $\cong \text{Hom}_R(S/n \otimes_S S, E) \cong \text{Hom}_R(S/n, E)$. Since S/n is killed by m, the image of any map of S/n into E must lie in $\text{Ann}_E m \cong \text{Hom}_R(K, E) \cong K$, the unique copy of K which is the
socle in E. Thus, $\text{Hom}_S(S/n, \text{Hom}_R(S,E)) \cong \text{Hom}_R(S/n,K) \cong \text{Hom}_K(L,K)$, which is a finite-dimensional vector space over L, say of dimension δ over L. But it has dimension $d = \dim_K L$ over K, and we see that $d\delta = d$, so that $\delta = 1$. □

The situation is much more transparent when S is a homomorphic image of R:

(3.4) Corollary. If $S = R/I$, where (R,m,K) is local, and $E = E_R(K)$, then the annihilator of I in E ($\cong \text{Hom}_R(R/I,E)$) is an injective hull for K over S.

Proof. Although this follows at once form (3.2), we give a completely different argument. Let E' be a maximal essential extension of K as an (R/I)-module. Then it is also an essential extension of K as an R-module, and so may be identified with a submodule of a maximal essential extension E of K as an R-module. Then $E' \subseteq E''$, where E'' is the set of all elements in E that are killed by I. But $K \subseteq E''$, is essential over R, and it follows that this is an essential extension of (R/I)-modules. Thus, $E' = E''$. □

We have already noticed that replacing a local ring (R,m,K) by its completion does not affect the injective hull of K. Once R is complete, we may view it as T/I where T is complete regular (even a formal power series ring). Thus, if we understand the injective hull of the residue field of T, we can think of $E_R(K)$ as the set of elements inside it killed by I. This gives us one handle on $E_R(K)$.

However, we can use (3.4) in a different way to gain insight into the structure of $E_R(K)$. The set of elements in $E = E_R(K)$ killed by m^t may be identified with $E_{R/m^t}(k)$. But every element of E is killed by some power of m. Thus, we may think of E as the union of the modules $E_{R/m^t}(K)$. We may also use a different sequence of m-primary ideals, provided it is cofinal with the powers of m (e.g., the ideals $(x_1^t, \cdots, x_n^t)R$, where x_1, \cdots, x_n is a system of parameters). This suggests that to understand E we should first try to understand the injective hull of K in the case where R is an Artin local ring.

4. THE CASE OF AN ARTIN LOCAL RING

If the Artin local ring (R,m,K) contains a field, it will contain a coefficient field, i.e. a copy of K that maps isomorphically onto K when we kill m. In this situation R is a finite dimensional K-vector space. Since $E_K(K) = K$, it is immediate from (3.3) that $E_R(K) \cong \text{Hom}_K(R,K)$ in this case. This R-module has the same length (or dimension over K) that R does. When R does not contain a field, we can no longer use vector space
dimension, but the notion of length is still available. The situation is the same in the
general case. This is easy to prove, but is nonetheless a very important theorem that is
the basis for the fancy duality theory we shall obtain later.

(4.1) Theorem. Let (R, m, K) be an Artin local ring. Then $E_R(K)$ is a module of finite
length, and its length is equal to the length of R

Proof. We use induction of the length $\ell(R)$ of R. If the length of R is 1 then $R = K$
and $E \cong K$. Now suppose that the length is positive and choose $x \in m$ in the highest
nonvanishing power of m, so that $x \neq 0$ but $mx = 0$. Thus, $Rx \cong R/m$ as R-modules. We
have a short exact sequence $0 \to Rx \to R \to R' \to 0$, where $R' = R/xR$ is a ring of length
exactly one less than R. Let $\overset{\vee}{\text{Hom}}_R(_ , E)$, where $E = E_R(K)$. Then we have a short
exact sequence $0 \to (Rx)\overset{\vee}{\to} E \to (R')\overset{\vee}{\to} 0$. $Rx \cong R/m, (Rx)\overset{\vee}{\cong} \text{Hom}_R(R/m, E) \cong R/m,$ and $(R')\overset{\vee}{=} \text{Hom}_R(R', E)$ is an injective hull for R'. By the induction hypothesis,
$\ell((R')\overset{\vee}{\,}) = \ell(R') = \ell(R) - 1$. It follows that $\ell(E) = \ell(R)$. □

We next observe:

(4.2) Lemma. Let (R, m, K) be any local ring and let $\overset{\vee}{\text{Hom}}_R(_ , E)$, where $E = E_R(K)$. Then for every finite length module $M,$ $\ell(M\overset{\vee}{\,}) = \ell(M)$.

Proof. First note that $K\overset{\vee}{\cong} K$, which takes care of the case where the length of M is one.
The result now follows from an easy induction: if M has length bigger than one, there is
a short exact sequence $0 \to K \to M \to M' \to 0$, where $\ell(M') = \ell(M) - 1$, and applying $\overset{\vee}{\,}$
yields the result. □

We can now show:

(4.3) Theorem. Let (R, m, K) be an Artin local ring and let $E = E_R(K)$. Then the
obvious map $R \to \text{Hom}_R(E, E)$ (which sends r to the map multiplication by r) is an
isomorphism.

Proof. By (4.2) $\text{Hom}_R(E, E)$ has the same length as E, which has the same length as R by (4.1). Thus, R and $\text{Hom}_R(E, E)$ have the same length. Therefore, to show that
the map is an isomorphism it suffices to show that it is one-to-one. Suppose $x \in R$ kills E.
Then $\text{Hom}_R(R/xR, E) = E$ will be an injective hull for K over R/xR. But then
$\ell(R) = \ell(E_R(K)) = \ell(E_{R/xR}(K)) = \ell(R) - \ell(xR)$, so that $\ell(xR) = 0 \Rightarrow x = 0$. □

We can now classify the local rings that are injective as modules over themselves.
(4.4) Theorem. A local ring \((R, m, K)\) is injective as a module over itself if and only if the Krull dimension of \(R\) is zero and the socle of \(R\) is one-dimensional as a \(K\)-vector space (which means that the type of \(R\) as a Cohen-Macaulay ring is 1). Moreover, \(R \cong E_R(K)\) in this case.

Proof. Suppose that \(R\) is injective as an \(R\)-module. A local ring is always indecomposable as a module over itself (apply \(K \otimes_R -\) to see this). Thus, if \(R\) is injective then it is isomorphic to \(E(R/P)\) for some prime ideal \(P\). Since each element of \(m - P\) acts invertibly on \(E(R/P)\) but non-invertibly on \(R\), we must have \(P = m\). Since every element of \(R\) is killed by a power of \(m\), including the identity element, we must have that \(m\) is nilpotent, and that \(R = E(R/m)\). Since the socle in \(E(R/m)\) is one-dimensional over \(K\), this must be true for \(R\) as well.

Now suppose that \(R\) has Krull dimension zero and that the socle of \(R\) is one-dimensional. Since a module \(M\) with \(\text{Ass} M = \{m\}\) is an essential extension of its socle, \(R\) is an essential extension of \(K = R/m\), and so \(R\) can be enlarged to a maximal essential extension \(E\) of \(K\). But \(R\) and \(E\) must have the same length. Thus, \(R = E\) is injective in this situation.

Our next objective is to show that Theorem (4.3) is valid for any complete local ring. This is the essential point in the proof of what is known as Matlis duality. In the course of this we shall also show that the injective hull of the residue field of a local ring has DCC, and that an \(R\)-module has DCC if and only if it can be embedded in a finite direct sum of copies of the injective hull of the residue field of \(R\).

5. MODULES WITH DCC AND MATLIS DUALITY

If \((R, m, K)\) is local with \(E = E_R(K)\) we shall let \(-^\lor\) denote the exact contravariant functor \(\text{Hom}_R(-, E)\). We have an obvious map \(R \to \text{Hom}_R(E, E)\) that sends \(r\) to the map consisting of multiplication by \(r\). But since \(E\) is also an injective hull of \(K\) over \(\hat{R}\), and since \(\text{Hom}_R(E, E) = \text{Hom}_{\hat{R}}(E, E)\), this map extends to a map \(\hat{R} \to \text{Hom}_R(E, E)\) that sends \(s\) to the map consisting of multiplication by \(s\). Our next main result is:

(5.1) Theorem. With notation as in the paragraph above, the map \(\hat{R} \to \text{Hom}_R(E, E)\) is an isomorphism. Thus, if \(R\) is a complete local ring, the obvious map \(R \to \text{Hom}_R(E, E) = E^\lor\) is an isomorphism.

Proof. It suffices to prove the second statement, and so we assume that \(R\) is complete. Let \(R(t) = R/m^t\). Then the set of elements \(E(t)\) killed by \(m^t\) in \(E\) is an injective hull for
Any map of E into E maps $E(t)$ into $E(t)$. We already know that the module of such maps is isomorphic with $R(t)$. Now, $E = \cup_{t} E(t)$, so that to give an endomorphism of E is equivalent to giving a family of endomorphisms of the $E(t)$ that fit together under restriction, i.e. an element of $\lim_{\leftarrow} R/m^{t} \cong R$ in the complete case. □

Note that the functor $\hom_{R}(_ , E_{R}(K))$ is faithful when (R, m, K) is a local ring. If M is a nonzero module we can embed a nonzero cyclic module $R/I \rightarrow M$. Since $M \rightarrow (R/I)^{\vee}$ is onto, it suffices to see that $(R/I)^{\vee}$ is nonzero. But $R/I \rightarrow R/m$ is onto, so that $(R/m)^{\vee} \rightarrow (R/I)^{\vee}$ is injective, and $(R/m)^{\vee} \cong R/m$ is nonzero. We next observe:

Corollary. Let (R, m, K) be a local ring and let $E = E(K)$. The E has DCC as an R-module.

Proof. If not we can choose an infinite strictly descending chain of submodules

$$E \subseteq E_{1} \supset E_{2} \supset \cdots \supset E_{i} \supset \cdots ,$$

and if we apply \vee we obtain

$$\hat{R} \rightarrow S_{1} \rightarrow S_{2} \rightarrow \cdots \rightarrow S_{i} \rightarrow \cdots ,$$

where each of the maps $S_{i} \rightarrow S_{i+1}$ is a proper surjection (nonzero kernel). Each of these map is \hat{R}-linear, and so the kernels $J_{i} = Ker(\hat{R} \rightarrow S_{i})$ form a strictly increasing chain of ideals of \hat{R}. Since \hat{R} is Noetherian, this is a contradiction. □

Of course, a ring with DCC must be Noetherian, but this is not at all true for modules. The modules with DCC that are also finitely generated have finite length. But there are, usually, many non-Noetherian modules with DCC over the ring R. The injective hull of K will not have finite length unless R is zero-dimensional, but it does have DCC.

Note that one cannot expect to give a very simple proof that $E_{R}(K)$ has DCC, since the family of its submodules is precisely as rich and complicated in structure as the family of ideals of the m-adic completion of R.

Theorem. Let (R, m, K) be a local ring and let M be an R-module. The following conditions are equivalent:

1. Every element of M is killed by a power of m and the socle of M is a finite-dimensional vector space over K.

Proof....
(2) \(\text{Ass } M = \{ m \} \) and the socle of \(M \) is a finite-dimensional vector space over \(K \).

(3) \(M \) is an essential extension of a finite-dimensional \(K \)-vector space.

(4) The injective hull of \(M \) is a finite direct sum of copies of \(E = E_R(K) \).

(5) \(M \) can be embedded in a finite direct sum of copies of \(E \).

(6) \(M \) has DCC.

Proof. We shall prove that (1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (1). Assume (1). Then each cyclic module \(R/I \) embeddable in \(M \) has the property that \(I \) contains a power of \(m \), and so if \(I \) is prime it must be \(m \). Thus, (1) ⇒ (2). Now assume (2). If \(R/I \) is isomorphic to a nonzero cyclic submodule of \(M \) then \(\text{Ass } R/I \subseteq \text{Ass } M \Rightarrow \text{Ass } R/I = \{ m \} \Rightarrow I \) is \(m \)-primary. Thus (1) ⇔ (2). Assume that these equivalent conditions hold. We have already observed that when (1) holds then \(M \) is an essential extension of its socle. Thus, (2) ⇒ (3). If \(M \) is an essential extension of \(V = K \oplus \cdots \oplus K \), then \(E(M) = E(V) \cong E(K) \oplus \cdots \oplus E(K) \). This shows that (3) ⇒ (4), while (4) ⇒ (5) is obvious. (5) ⇒ (6) because \(E \) has DCC (establishing this is the hardest part of the proof of this theorem, but we have already done so), a finite direct sum of modules with DCC has DCC, and a submodule of a module with DCC has DCC. Finally (6) implies that every element of \(M \) is killed by a power of \(m \), because each cyclic module \(R/I \) embeddable in \(M \) will have DCC, and then \(R/I \) is an Artin ring. Moreover, the socle is a vector space with DCC, and so must be finite-dimensional (if \(v_1, \cdots, v_n, \cdots \) were infinitely many linearly independent element we could let \(W_n \) be the span of the vectors \(v_h \) for \(h \geq n \) for each \(n \), and then \(V_1 \supset \cdots \supset V_n \supset \cdots \) is a strictly descending infinite chain of subspaces).

We shall later take a closer look at what the injective hull of the residue field of a regular local ring is like, but not until after we have begun the study of local cohomology.

The isomorphism \(R \to \text{Hom}_R(E, E) \) when \(R \) is a complete local ring is the key to the following result:

\textbf{(5.4) Theorem (Matlis duality).} Let \(R, m, K \) be a complete local ring, let \(E = E_R(K) \) and let \(_ \vee \) denote the functor \(\text{Hom}_R(_, E) \).

(a) If \(M \) is a module with ACC then \(M \vee \) has DCC, while if \(M \) has DCC then \(M \vee \) has ACC. Moreover, if \(M \) has either ACC or DCC then the obvious map \(M \to M \vee \vee \) is an isomorphism.

(b) The category of \(R \)-modules with ACC is antiequivalent to the category of \(R \)-modules with DCC. The functor \(_ \vee \) with its domain restricted to modules with ACC and its codomain to modules with DCC gives the antiequivalence in one direction, and the
same functor with its domain restricted to modules with DCC and its codomain to modules with ACC gives the antiequivalence the other way.

Proof. M has ACC (respectively, DCC) if there is a surjection $R^t \to M$ (respectively, an injection $M \subseteq E^t$). Dualizing gives an injection $M^\vee \subseteq (R^\vee)^t \cong E^t$ (respectively, a surjection $(E^\vee)^t \to M$, and $E^\vee \cong R$). Moreover, if M has ACC (respectively, DCC) there is a presentation $R^s \xrightarrow{\alpha} R^t \to M \to 0$ (respectively, $0 \to M \to E^t \xrightarrow{\beta} E^s$); since E^t/M has DCC it can be embedded in a direct sum of copies of E. Here, α is a $t \times s$ (respectively, β is an $s \times t$) matrix over R (in the case of β we are making use of the identification $R \cong \text{Hom}_R(E, E)$). Applying \vee once yields $0 \to M^\vee \to (R^t)^\vee \xrightarrow{\alpha^{tr}} (R^s)^\vee$ (respectively, $(E^s)^\vee \xrightarrow{\beta^{tr}} (E^t)^\vee \to M^\vee \to 0)$, where we are forestalling making use of our identifications $R \cong E^\vee$ and $R^\vee \cong E$. Applying the functor $_^\vee$ we obtain two commutative diagrams,

\[
\begin{array}{ccccccccc}
(R^s)^\vee & \xrightarrow{\alpha} & (R^t)^\vee & \longrightarrow & M^\vee & \longrightarrow & 0 \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
R^s & \xrightarrow{\alpha} & R^t & \longrightarrow & M & \longrightarrow & 0
\end{array}
\]

and

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & M^\vee & \longrightarrow & (E^t)^\vee & \xrightarrow{\beta} & (E^s)^\vee \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
0 & \longrightarrow & M & \longrightarrow & E^t & \xrightarrow{\beta} & E^s
\end{array}
\]

Now $_^\vee$ and, hence, $_^{\vee\vee}$ commutes with direct sum. Since cokernels (respectively, kernels) of isomorphic maps are isomorphic, it suffices to see that the maps from R^s and R^t (respectively, E^s and E^t) to their double duals are isomorphisms, and this comes down to checking the case where $M = R$ (respectively, $M = E$). But in one case we get the map $R \to \text{Hom}_R(E, E)$ that we already know to be an isomorphism, and in the other we get the map $E \to \text{Hom}_R(E^\vee, E) \cong \text{Hom}_R(R, E) \cong E$. This establishes part (a).

Let \mathcal{F}_1 denote the functor $_^\vee$ from modules with ACC to modules with DCC and let \mathcal{F}_2 denote the functor $_^\vee$ from modules with DCC to modules with ACC. Then part (a) implies at once that both $\mathcal{F}_1 \circ \mathcal{F}_2$ and $\mathcal{F}_2 \circ \mathcal{F}_1$ are isomorphic to the identity functor (the first on modules with DCC, the second on modules with ACC), and the result follows. \(\square\)

(5.5) Exercise. Let (R, m, K) be a complete local ring and let notation be as in Theorem 4.4. Let M be a finitely generated R-module. Show that $\text{Hom}_K(M/mM, K) \cong \text{Hom}_R(K, M^\vee)$. Thus, the least number of generators of M is the same as the dimension of the socle in its dual.
(5.6) Remark. Since modules with DCC over the local ring R all have the property that every element is killed by a power of m, the category of R-modules with DCC is the same as the category of \widehat{R}-modules with ACC. If M is finitely generated over R, then M^\wedge still has DCC, while the map $M \to M^\wedge$ is isomorphic with the map $M \to \widehat{M}$. If N has DCC then N^\wedge is a finitely generated module over \widehat{R}. In general, it will not be true that every R-module with DCC “arises” from an R-module with ACC; there are more modules with ACC over \widehat{R} than there are over R.

We are now ready to begin our discussion of local cohomology.

LOCAL COHOMOLOGY: A FIRST LOOK

(6.1) Definition. Let R be a Noetherian ring and let M be an arbitrary module. Suppose that $I \subseteq R$ is an ideal. Notice that if $I \supseteq J$ the surjection $R/J \to R/I$ induces map $\text{Ext}^i(R/I, M) \to \text{Ext}^i(R/J, M)$. Thus, if $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_t \supseteq \cdots$ is a decreasing sequence of ideals then we get a direct limit system

$$\cdots \to \text{Ext}^i_R(R/I_t, M) \to \text{Ext}^i_R(R/I_{t+1}, M) \to \cdots$$

and we may form the direct limit of these Ext’s. We define $H^i_I(M) = \lim_{\leftarrow} \text{Ext}^i_R(R/I_t, M)$, and call this module the ith local cohomology module of M with support in I.

(6.2) Discussion. Suppose that we replace the sequence $\{I_t\}_t$ by an infinite subsequence. The direct limit is obviously unaffected. Likewise, if $\{J_t\}_t$ is another decreasing sequence of ideals which is cofinal with I_t (i.e., for all t, there exists u such that $J_u \subseteq T_t$ and v such that $I_v \subseteq J_t$), then the direct limit computed using the J’s is the same. We can form a sequence $I_{a(1)} \supseteq J_{b(1)} \supseteq I_{a(2)} \supseteq J_{b(2)} \supseteq \cdots \supseteq I_{a(t)} \supseteq J_{b(t)} \supseteq \cdots$ which yield the same result, on the one hand, as $\{I_{a(t)}\}_t$ and, hence, as $\{I_t\}_t$. Similarly, it yields the same result as $\{J_t\}_t$.

In particular, if $I = (x_1, \cdots, x_n)R$, then the sequence $I_t = (x_1^t, \cdots, x_n^t)R$ is cofinal with the powers of I, and so may be used to compute the local cohomology.

We also have:

(6.3) Theorem. If I, J are ideals of the Noetherian ring R with the same radical, then $H^i_I(M) \cong H^i_J(M)$ canonically for all i and for all R-modules M.

Proof. Each of the ideals I, J has a power contained in the other, and it follows that the sequences $\{I^t\}_t, \{J^t\}_t$ are cofinal with one another. □

(6.4) Discussion. If $X \subseteq \text{Spec } R$ is closed, then $X = V(I)$ where I is determined up to radicals: we may write $H^i_X(M)$ for $H^i_I(M)$ and refer to \textit{local cohomology with support in } X.

(6.5) Discussion. $\text{Ext}^i_R(R/I^t, M)$ is a covariant additive functor of M, and Ext has a long exact sequence. All this is preserved when we take a direct limit. Thus, each $H^i_I()$ is a covariant additive functor, and given a short exact sequence of modules

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

there is a long exact sequence

$$0 \rightarrow H^0_I(A) \rightarrow H^0_I(B) \rightarrow H^0_I(C) \rightarrow H^1_I(A) \rightarrow H^1_I(B) \rightarrow H^1_I(C) \rightarrow \cdots$$

which is functorial in the given short exact sequence. Moreover, if M is injective, $H^1_I(M) = 0$ for all $i \geq 1$. It is also worth noting that if $x \in R$ then the map $M \xrightarrow{x} M$ induces the map $H^i_I(M) \xrightarrow{x} H^i_I(M)$ on local cohomology.

Note, however, that even when M is finitely generated, the modules $H^i_I(M)$ need not be finitely generated, except under special hypotheses. However, we shall see that when I is a maximal ideal of R, they do have DCC.

(6.6) Discussion of H^0_I. Note that $\text{Hom}_R(R/I, M)$ may be identified with $\text{Ann}_M I$ and that the map $\text{Hom}_R(R/I, M) \rightarrow \text{Hom}_R(R/J, M)$ when $I \supseteq J$ may then be identified with the obvious inclusion $\text{Ann}_M I \subseteq \text{Ann}_M J$. This means that $H^0_I(M)$ may be identified with the functor which assigns to M its submodule $\bigcup_t \text{Ann}_M I^t$, the submodule of M consisting of all elements that are killed by a power of I.

(6.7) Discussion. A minor variation on the definition of the local cohomology functors is as follows: First define $H^0_I(M) = \{x \in M : x$ is killed by some power of $I\}$. The define $H^i_I(M)$ as the i th right derived functor of H^0_I. Thus, to compute H^i_I one would choose an injective resolution of M, say $0 \rightarrow E_0 \rightarrow \cdots \rightarrow E_i \rightarrow \cdots$, where $M = \text{Ker}(E_0 \rightarrow E_1)$, and then take the cohomology of $0 \rightarrow H^i_I(E_0) \rightarrow \cdots \rightarrow H^0_I(E_i) \rightarrow \cdots$. In the original definition one first takes the cohomology of the complex C^\bullet_t:

$$0 \rightarrow \text{Hom}_R(R/I^t, E_0) \rightarrow \cdots \rightarrow \text{Hom}_R(R/I^t, E_i) \rightarrow \cdots$$
and then takes the direct limit of the cohomology. In the second definition, up to isomorphism, one takes the direct limit of the complexes C^t_i and then takes cohomology. Since calculation of homology or cohomology commutes with taking direct limits, these two definitions are simply minor variations on one another.

(6.8) Proposition. Let R be a Noetherian ring, $I \subseteq R$ and let M be any R-module. Then every element of $H^i_I(M)$ is killed by a power of I.

Proof. Every element is in the image of some $\text{Ext}^i_R(R/I^t, M)$ for some t, and I^t kills that Ext. □

We now prove that local cohomology can be used to test depth.

(6.9) Theorem. Let I be an ideal of a Noetherian ring R and let M be a finitely generated R-module. Then $H^i_I(M) = 0$ for all i if and only if $IM = M$. If $IM \neq M$ then the least value d of i such that $H^i_I(M) \neq 0$ is the depth of M on I, i.e., the length of any maximal M-sequence contained in I.

Proof. If $IM = M$ then $I^tM = M$ for all t, and then $I^t + \text{Ann} M = R$ for all t. Since $I^t + \text{Ann} M$ kills $\text{Ext}^i_R(R/I^t, M)$, it follows that every one of these Ext’s is zero, and so all the local cohomology modules vanish.

Now suppose that $IM \neq M$ and let x_1, \ldots, x_d be a maximal M-sequence in I. We shall show by induction on d that $H^i_I(M) = 0$ if $i < d$ while $H^d_I(M) \neq 0$. If $d = 0$ this is clear, since then some element of $M - \{0\}$ will be killed by I and will be nonzero in $H^0_I(M)$. If $d > 0$ the short exact sequence $0 \to M \to M/\langle x \rangle M \to 0$ with $x = x_1$ yields a long exact sequence for local cohomology:

$$\cdots \to H^{i-1}_I(M/\langle x \rangle M) \to H^i_I(M) \xrightarrow{x} H^i_I(M/\langle x \rangle M) \to H^i_I(M) \xrightarrow{x} H^i_I(M/\langle x \rangle M) \cdots.$$

For $i < d$ the induction hypothesis shows that x is a nonzerodivisor on $H^i_I(M)$, which must vanish, since every element is killed by a power of $x \in I$. When $i = d$ the sequence also shows that $H^{d-1}_I(M/\langle x \rangle M)$, which we know from the induction hypothesis is nonzero, injects into $H^d_I(M)$ (we already have $H^{d-1}_I(M) = 0$). □

Our next objective is to give quite a different method of calculating local cohomology: equivalently, we may use either a direct limit of Koszul cohomology or a certain kind of Cech cohomology. In order to present this point of view, we first discuss the tensor product of two or more complexes, and then define Koszul homology and cohomology. We
subsequently explain how to set up a direct limit system and, after a while, prove that we can obtain local cohomology in this way.

One of the virtues of having this point of view is that it will enable us to prove a very powerful theorem about change of rings. One of the virtues of local cohomology is that it is “more invariant,” in some sense, than other theories that measure some of the same qualities. Its disadvantage is that it usually produces modules that are not finitely generated.

7. TENSOR PRODUCTS OF COMPLEXES AND KOSZUL COHOMOLOGY

(7.1) Discussion. We shall discuss Koszul cohomology, using the notion of the tensor product of two complexes to define it. Let K_\bullet and L_\bullet be complexes of R-modules with differentials d, d', respectively. Then we let $M_\bullet = K_\bullet \otimes_R L_\bullet$ denote the complex such that:

1. $M_h = \bigoplus_{i+j=h} K_i \otimes L_j$ and
2. $d(a_i \otimes b_j) = da_i \otimes b_j + (-1)^i a_i \otimes d'b_j$ when $a_i \in K_i$ and $b_j \in L_j$

It is easy to check that this does, in fact, give a complex. If there are n complexes then we may define the tensor product

$$K^{(1)}_\bullet \otimes_R \ldots \otimes_R K^{(n)}_\bullet$$

recursively as

$$\left(K^{(1)}_\bullet \otimes_R \ldots \otimes_R K^{(n-1)}_\bullet \right) \otimes_R K^{(n)}_\bullet,$$

or we may take it to be the complex M_\bullet such that

$$M_h = \bigoplus_{i(1)+\ldots+i(n)=h} K^{(1)}_{i(1)} \otimes_R \ldots \otimes_R K^{(n)}_{i(n)}$$

and such that if $a^j_{i(j)} \in K^{(j)}_{i(j)}$ for each j, then

$$d\left(a^1_{i(1)} \otimes \ldots \otimes a^n_{i(n)}\right) = \sum_{t=1}^{n} (-1)^{i(1)+\ldots+i(t-1)} a^1_{i(1)} \otimes \ldots \otimes d^t a_{i(t)} \otimes \ldots \otimes a^n_{i(n)},$$

where d^t denotes the differential on $K^{(t)}_\bullet$.

Given a sequence of n elements of a ring R, say $\underline{x} = x_1, \ldots, x_n$, we may define the (homological) Koszul complex $K_\bullet(\underline{x}; R)$ as follows: If $n = 1$ and $x_1 = y$, it is the complex
0 → $K_1 \xrightarrow{y} K_0 \rightarrow 0$ where $K_1 = K_0 = R$ and the middle map is multiplication by y. Then, in general, $K_\bullet(x; R) = K_\bullet(x_1; R) \otimes_R \cdots \otimes_R K_\bullet(x_n; R)$.

For the cohomological version we proceed slightly differently: We let $K_\bullet(y; R)$ (with one element, y, in the sequence) be the complex

$$
0 \rightarrow K^0 \xrightarrow{y} K^1 \rightarrow 0
$$

in which $K^0 = K^1 = R$ and the middle map is multiplication by y. We then let $K_\bullet(x; M) = K_\bullet(x_1; R) \otimes_R \cdots \otimes_R K_\bullet(x_n; R)$.

We may then define $K_\bullet(x; M) = K_\bullet(x_1; R) \otimes_R M$ and $K_\bullet(x; M) = K_\bullet(x; R) \otimes_R M$, which is isomorphic with $\operatorname{Hom}_R(K_\bullet(x; R), M)$. We are mainly interested in the cohomological version here.

(7.2) Discussion. Let M be an R-module and let $x \in R$ be any element. We may form a direct limit system

$$
M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} \cdots
$$

Let N be the set of all elements in N killed by some power of x, i.e., $N = \operatorname{Ker}(M \rightarrow M_x)$. Let $M' = M/N$. The copy of N (notice, by the way, that $N = H_0^0(x; M)$) inside each copy of M is killed in the direct limit. Thus, the system above has the same direct limit as

$$
M' \xrightarrow{x} M' \xrightarrow{x} M' \xrightarrow{x} \cdots
$$

This system is isomorphic with an increasing union, as indicated in the commutative diagram below:

$$
\begin{array}{c c c c c c}
M' & \hookrightarrow & M' \cdot \frac{1}{x} & \hookrightarrow & M' \cdot \frac{1}{x^2} & \hookrightarrow & \cdots & \hookrightarrow & M' \cdot \frac{1}{x^t} & \hookrightarrow & \cdots \\
\uparrow & & \uparrow & & \uparrow & & \cdots & & \uparrow & & \cdots \\
M' & \xrightarrow{x} & M' & \xrightarrow{x} & M' & \xrightarrow{x} & \cdots & \xrightarrow{x} & M' & \xrightarrow{x} & \cdots
\end{array}
$$

where $M' \cdot \frac{1}{x^t}$ denotes $\{m'/x^t : m' \in M'\} \subseteq M'_{x^t}$, and the map $M' \rightarrow M' \cdot \frac{1}{x^t}$ is the R-isomorphism sending m' to m'/x^t for every $m' \in M'$. Since the union of the modules in the top row is $M'_x \cong M_x$, it follows that the direct limit of the system in the bottom row is also M_x, and so the direct limit of the original system $M \xrightarrow{x} M \xrightarrow{x} M \xrightarrow{x} \cdots M \xrightarrow{x} \cdots$ is M_x as well (where the map from the tth copy of M into M_x sends m to m/x^t). The case where $M = R$ is of particular interest.
(7.3) Discussion. If \(x = x_1, \ldots, x_n \) is a sequence of elements of \(R \), we let \(x^t \) denote the sequence \(x_1^t, \ldots, x_n^t \). We next want to describe how to form a direct limit system, indexed by \(t \), from the Koszul complexes \(K_\bullet(x^t; M) \), where \(M \) is an \(R \)-module.

We begin with the case where \(n = 1 \), \(x_1 = x \), and \(M = R \). Then the map from \(K_\bullet(x^t; R) \to K_\bullet(x^{t+1}; R) \) is as indicated by the vertical arrows in the diagram below:

\[
\begin{array}{ccc}
K^0 & \to & K^1 \\
\downarrow \text{id}_R & & \downarrow x \\
0 & \to & 0 \\
\end{array}
\]

When we have maps of complexes \(K_\bullet 1 \to L_\bullet 1, K_\bullet 2 \to L_\bullet 2 \) there is an induced map \(K_\bullet 1 \otimes K_\bullet 2 \to L_\bullet 1 \otimes L_\bullet 2 \) (such that the element \(x \otimes y \) is sent to \(f(x) \otimes g(y) \)), and a similar observation applies to the tensor product of several complexes. Thus, the maps \(K_\bullet(x^t; R) \to K_\bullet(x^{t+1}; R) \) that we constructed above may be tensored together over \(R \) to produce a map \(K_\bullet(x^t; R) \to K_\bullet(x^{t+1}; R) \), and we may tensor over \(R \) with an \(R \)-module \(M \) to obtain a map \(K_\bullet(x^t; M) \to K_\bullet(x^{t+1}; M) \).

This leads to two equivalent cohomology theories. On the one hand, we may use the induced maps \(H_\bullet(x^t; M) \to H_\bullet(x^{t+1}M) \) and take the direct limit.

On the other hand, we may form the complex \(\lim_t K_\bullet(x^t; M) \), which we shall denote \(K_\bullet(x^\infty; M) \), and then take its cohomology, which we shall denote \(H_\bullet(x^\infty; M) \). This gives the same result as taking the direct limit of Koszul cohomology, since the calculation of cohomology commutes with direct limits.

Our main result along these lines, whose proof we defer for a while, is this:

(7.4) Theorem. Let \(R \) be a Noetherian ring and let \(x_1, \ldots, x_n \) be elements of \(R \). Let \(I = (x_1, \ldots, x_n)R \). Then \(H_I^j(M) \cong H_\bullet(x^\infty; M) \) canonically as functors of \(M \).

The idea of our proof is this: we establish the result when \(j = 0 \) by an easy calculation, we note that both \(H_\bullet(_; M) \) and \(H_\bullet(x^\infty; _; M) \) give rise to functorial long exact sequences given short exact sequences of modules, and also that both vanish in higher degree when the module \(M \) is injective. The result will then follow from very general considerations.
concerning cohomological functors. Before giving the details of the argument, we want to analyze further the complexes $K^\bullet(x^\infty; M)$.

When the x's form a regular sequence there is quite a different explanation of why this complex ought to give the local cohomology. In that case $K^\bullet(x^t; R)$ is a projective resolution of $R/(x^t)R$. Applying $\text{Hom}_R(_, M)$ yields the same result as forming $K^\bullet(x^t; R) \otimes_R M = K^\bullet(x^t; M)$, and so $H^\bullet(x^t; M)$ is $\text{Ext}^\bullet_R(R/(x^t), M)$ in this case, and the direct limit system of complexes $K^\bullet(x^t; M)$ is the correct one for calculating the direct limit of these Ext's. What is somewhat remarkable is that the direct limit of Koszul cohomology gives the local cohomology whether the x_i form a regular sequence or not.

(7.5) Description of the direct limit of cohomological Koszul complexes. We first consider the case where there is only one x and $M = R$. We refer to the diagrams $(\#_1)$ above that were used to define the direct limit system. The direct limit of the K^0's, each of which is a copy of R, and where each map is the identity map on R, is R. Thus, $K^0(x^\infty; R) = R$. The direct limit of the K^1's is

$$\lim_{\longrightarrow} (R \xrightarrow{x} R \xrightarrow{x} R \xrightarrow{x} \cdots R \xrightarrow{x} \cdots) \cong R_x.$$

Moreover, the limit of the maps is the standard map $R \to R_x$ (which sends 1_R to 1_{R_x} and is injective when x is not a zerodivisor in R). Since \otimes_R commutes with direct limits, it is easy to see that $K^\bullet(x^\infty; R) \cong \bigotimes_{i=1}^n (0 \to R \to R_{x_i} \to 0)$. The term in degree 0 is simply the tensor product of n copies of R, and may be identified with R. The term in degree 1 is the direct sum of n terms, each of which is tensor product of $i - 1$ copies of R, R_{x_i}, and then $n - i$ copies of R. Thus, the term in degree 1 is $R_{x_1} \oplus \cdots \oplus R_{x_n}$. The term in degree j, $0 \leq j \leq n$, is the sum of \(\binom{n}{j} \) terms, one for each j element subset $S = \{i(1), \ldots, i(j)\}$ of the integers from 1 to n, where the term corresponding to $\{i(1), \ldots, i(j)\}$ consists of the tensor product of n terms, such that the h th term is a copy of R if $h \notin S$ and is a copy of $R_{x_i(\nu)}$ if $h = i(\nu) \in S$. Since $R_x \otimes_R R_y \cong R_{xy}$ (with the obvious generalization to tensor products of several such terms), we may use the following description: For each set $S \subseteq \{1, \ldots, n\}$, let $x(S) = \prod_{i \in S} x_i$ (note that $x(\emptyset) = 1$). Then $K^j(x^\infty; R) \cong \bigoplus_{S \subseteq \{1, \ldots, n\}, |S|=j} R_{x(S)}$.

When there are just two elements x, y the direct limit complex looks like:

$$0 \to R \to R_x \oplus R_y \to R_{xy} \to 0$$

while in the case where there are three elements x, y, z the direct limit complex looks like:

$$0 \to R \to R_x \oplus R_y \oplus R_z \to R_{yz} \oplus R_{xz} \oplus R_{xy} \to R_{xyz} \to 0.$$
Moreover, the map from each term to the next is easy to describe: it suffices to explain how \(R_x(S) \) maps to \(\bigoplus_{|T|=|S|+1} R_x(T) \): we then take the direct sum of all these maps. If we think of the sum \(\bigoplus_{|T|=|S|+1} R_x(T) \) as a product, we see that this map will be given by component maps \(R_x(S) \to R_x(T) \), where \(T \) has one more element in it than \(S \) does. The map is zero unless \(S \subseteq T \). If \(S \subseteq T \) then \(R_x(T) \) is, up to isomorphism, the localization of \(R_x(S) \) at the single element corresponding to the index that is in \(T \) and not in \(S \). The map is zero unless \(S \subseteq T \). If \(S \subseteq T \) then \(R_x(T) \) is, up to isomorphism, the localization of \(R_x(S) \) at the single element corresponding to the index that is in \(T \) and not in \(S \). The map \(R_x(S) \to R_x(T) \) is, except for sign, the obvious map of the ring \(R_x(S) \) into its localization at the additional element. The only issue is what sign to attach, and the definition for tensor products of complexes tells us that is done with the same pattern as in the cohomological Koszul complex. To be completely explicit, the sign attached is \((-1)^a\), where \(a \) is the number of elements of \(S \) that precede the element of \(T \) that is not in \(S \).

It is worth noting that the first map \(R \to R_{x_1} \oplus \cdots \oplus R_{x_n} \) simply sends the element \(r \in R \) to \(r/1 \oplus \cdots \oplus r/1 \), where the \(i \)th copy of \(r/1 \) is to be interpreted as an element of \(R_{x_i} \).

We next want to discuss \(K^\bullet(x^\infty; M) \). The key point is that every \(K^\bullet(x_1; M) \cong K^\bullet(x^1; R) \otimes R \) and it readily follows that \(K^\bullet(x^\infty; M) \cong K^\bullet(x^\infty; R) \otimes R \). Thus, \(K^j(x^\infty; M) \cong \bigoplus_{|S|=j} M_x(S) \) and the maps are constructed from the ones in the case where \(M = R \) by applying \(- \otimes R \) : thus, they are direct sums of maps whose components are maps induced by “localizing further,” but with suitable signs attached. For example, in case the sequence of elements is \(x, y, z \), the direct limit complex is

\[
0 \to M \to M_x \oplus M_y \oplus M_z \to M_{yz} \oplus M_{xz} \oplus M_{xy} \to M_{xyz} \to 0.
\]

We should also note that, in complete generality, the first map in the complex

\[
M \to M_{x_1} \oplus \cdots \oplus M_{x_n}
\]

simply sends \(m \) to \(m/1 \oplus \cdots \oplus m/1 \), where the \(i \)th copy of \(m/1 \) is to be interpreted as an element of \(M_{x_i} \).

We shall write \(H^j(x^\infty; M) \) for \(H^j(K^\bullet(x^\infty; M)) \). We note the following facts:

(7.6) Proposition. Let \(x = x_1, \ldots, x_n \) be a sequence of elements in any ring \(R \). Let \(I = (x_1, \ldots, x_n)R \). Let \(M, M', M'', M_\lambda, \) etc., be arbitrary \(R \)-modules.

(a) \(K^\bullet(x^\infty; R) \) is a complex of flat \(R \)-modules.

(b) \(H^0(x^\infty; M) \) is the submodule of \(M \) consisting of all elements killed by a power of \(I \).

Thus, if \(R \) is Noetherian, it coincides with \(H^0_I(M) \).
(c) Given a short exact sequence $0 \to M' \to M \to M'' \to 0$ of R-modules there is a functorial long exact sequence of cohomology

$$0 \to H^0(x^\infty; M') \to H^0(x^\infty; M) \to H^0(x^\infty; M'')$$

$$\to H^1(x^\infty; M') \to H^1(x^\infty; M) \to H^1(x^\infty; M'') \to \ldots$$

$$\to H^1(x^\infty; M') \to H^1(x^\infty; M) \to H^1(x^\infty; M'') \to \ldots$$

$$\to H^n(x^\infty; M') \to H^n(x^\infty; M) \to H^n(x^\infty; M'') \to 0.$$

(d) If $\{M_\lambda\}_\lambda$ is any direct limit system of R-modules then

$$H^j(x; \lim_{\to} M_\lambda) \cong \lim_{\to} H^j(x^\infty; M_\lambda).$$

In particular, $H^j(x^\infty; -)$ commutes with arbitrary direct sums.

(e) For every value of j, every element of $H^j(x^\infty; M)$ is killed by $\text{Ann } M$.

(f) Let $R \to S$ be a homomorphism, let $x_1, \ldots, x_n \in R$, and let $y = y_1, \ldots, y_n$ denote their images in S. Let M be an S-module viewed as an R-module by restriction of scalars. Then $H^j(x^\infty; M) \cong H^j(y^\infty; M)$ as S-modules. (The first is an S-module because multiplication by any element of S gives an R-endomorphism of M which induces an R-endomorphism of the module $H^j(x^\infty; M)$.)

Proof. (a) is obvious, since each module in the complex is a direct sum of localizations of R. Now $H^0(x^\infty; M)$ is the kernel of the map $M \to M_{x_1} \oplus \cdots \oplus M_{x_n}$ sending m to $m/1 \oplus \cdots \oplus m/1$, and m will be in the kernel if and only if it is killed by a power of x_i for each i: this is equivalent to the assertion that m is killed by a power of I, since I is finitely generated by the x_i. The short exact sequence $0 \to M' \to M \to M'' \to 0$ may be tensored with the flat complex $K^\bullet(x^\infty; R)$. Because of that flatness, we get a short exact sequence of complexes:

$$0 \to K^\bullet(x^\infty; M') \to K^\bullet(x^\infty; M) \to K^\bullet(x^\infty; M'') \to 0$$

which, by the snake lemma, yields the long exact sequence of cohomology we want. (d) is clear from the fact that both \otimes and calculation of (co)homology commute with formation of direct limits. (e) is immediate from the fact $H^j(x^\infty; M)$ is a direct limit of Koszul cohomology $H^j(x^\infty; M)$ (and this is the same as Koszul homology numbered backwards).
Finally, (f) follows from the fact that the action of any x_i or any product x of the x_i on M is the same as the action of the corresponding y_i or product y of y_i. This means that we may identify each M_x with the corresponding M_y, and so the complex $K^\bullet(y^\infty; M)$ may be identified with the complex $K^\bullet(y^\infty; M)$. The cohomology is then evidently the same. □

We next observe:

Lemma. Let $x = x_1, \ldots , x_n$ be a sequence of elements of the ring R and let M be an R-module of finite length. Then $H^j(x^\infty; M) = 0$ for all $j \geq 1$.

Proof. Since M has finite length, it has a finite filtration in which all the factors have the form $R/m = K$, where m is a maximal ideal of R. By induction on the length of the filtration and the long exact sequence provided by (7.6c), it suffices to handle the case where $M = K$. But then, by (f), we may replace R by $S = R/\text{Ann}M = R/m = K$. I.e., we may assume that $R = K$ is a field and that $M = K$. Here, the x_i are replaced by their images in K. If any x_i is nonzero, the x_i generate the unit ideal and the result follows from the fact that every element of every H^j is killed by a power of the unit ideal of K. If every x_i is 0 the result follows from the fact that the complex is zero in all positive degrees, since in each summand one is localizing at 0 and, for any module N over any ring, $N_x = 0$ when $x = 0$. □

Theorem. Let R be a Noetherian ring and let E be an injective module. Let $x_1, \ldots , x_n \in R$. Then $H^j(x^\infty; E) = 0$ for all $j \geq 1$.

Proof. Since E is a direct sum of modules $E = E(R/P)$, where P is prime, we assume by (7.6d) that $E = E(R/P) = E_{R_P}(R_P/R_P)$. By (7.6f) we may replace R by R_P. Thus, we may assume that (R,P,K) is local. Then every element of E is killed by a power of P. Since E is the directed union of its finitely generated submodules, each of which has finite length, the result follows at once from (7.7) and (7.6d). □

We are now ready to go back and give the proof of (7.4).

Discussion: the proof of Theorem 7.4. Fix a Noetherian ring R and a sequence of elements $x = x_1, \ldots , x_n$ in R. Let $I = (x_1, \ldots , x_n)R$. We already know that the sequences of functors $H^j(I(-))$ and $H^i(x^\infty; -)$ from R-modules to R-modules behave similarly in three respects:
(1) $H^0_I(_)$ and $H^0(\mathfrak{m}_\infty; _)$ are canonically isomorphic functors: in both cases their values on M may be identified with the submodule of M consisting of all elements that are killed by a power of I.

(2) Both $H^i_I(_)$ and $H^i(\mathfrak{m}_\infty; _)$ vanish on injective R-modules for $i \geq 1$.

(3) Both the sequence of functors $H^i_I(_)$ and the sequence of functors $H^i(\mathfrak{m}_\infty; _)$ have functorial long exact sequences induced by a given short exact sequence of modules.

These three properties are sufficient to enable us to give a canonical isomorphism between these two cohomology theories. The argument is very general: it makes no use of any properties of these functors other than (1), (2), (3) above. Both for typographical convenience and to illustrate the degree of generality of the proof, we change notation and write, simply, H^i for H^i_I and H^i for $H^i(\mathfrak{m}_\infty; _)$.

Now, given any R-module M we can embed M in an injective module E and so construct a short exact sequence $0 \to M \to E \to C \to 0$. This gives rise to two long exact sequences, one for H and one for H'. Since both vanish on injectives, we obtain exactness of the top and bottom rows in the diagram below, while the vertical arrows are provided by the identification of H^0 and H^0:

\[
\begin{array}{cccccc}
0 & \longrightarrow & H^0(M) & \longrightarrow & H^0(E) & \longrightarrow & H^0(C) & \longrightarrow & H^1(M) & \longrightarrow & 0 \\
(\#) & & \uparrow \cong \\
0 & \longrightarrow & H^0(M) & \longrightarrow & H^0(E) & \longrightarrow & H^0(C) & \longrightarrow & H^1(M) & \longrightarrow & 0
\end{array}
\]

Thus, we get an induced isomorphism $H^1(M) \cong H^1(M)$, since cokernels of isomorphic maps are isomorphic. This identification is independent of the choice of the embedding of M into E. To see this, it suffices to compare what happens when E is an injective hull of M with what happens with an embedding into some other injective. The second embedding may then be taken into $E \oplus E'$ (where $M \subseteq E$), and E' is injective. C is then replaced by $C \oplus E'$. We leave the details to the reader. It is also not hard to check that the identification of H^1 with H^1 is an isomorphism of functors. The long exact sequences that yield the rows of (\#) also give isomorphisms of $H^{i+1}(M) \cong H^i(C)$ for $i \geq 1$, and similarly for H. Thus, once we have established the isomorphisms $H^i \cong H^i$ for some $i \geq 1$, we may use the isomorphisms coming from the long exact sequences to get $H^{i+1}(M) \cong H^i(C) \cong H^i(C) \cong H^{i+1}(M)$. Again, one can check easily that the isomorphism $H^{i+1}(M) \cong H^{i+1}(M)$ that one obtains in this way is independent of the
choice of the embedding $0 \to M \to E$. It is also not difficult to check that it is an isomorphism of functors. Finally, one can also check that our identification of H^\bullet with \underline{H}^\bullet is compatible with the connecting homomorphisms in long exact sequences, so that, in each instance, one gets an isomorphism of long exact sequences. The details are not difficult, and we omit them here.

This completes our discussion of the proof of Theorem 7.4. □

When we speak of the *number of generators of an ideal* I *up to radicals* we mean the least integer n such that $\text{Rad } I$ is also the radical of an ideal generated by n elements. By taking powers, we may always arrange for the n elements to be in I. We note:

(7.10) Corollary. Let I be an ideal of a Noetherian ring R. If I is generated by n elements up to radicals, then $H^i_I(M) = 0$ for $i > n$.

Proof. Suppose that $\text{Rad } I = \text{Rad } J$, where $J = (x_1, \ldots, x_n)R$. Then $H^i_I(M) = H^i_J(M) = H^i(\mathfrak{x}^\infty; M)$, and the last is obviously zero when $i > n$, since the complex $K^\bullet(\mathfrak{x}^\infty; M)$ is zero in degree bigger than n. □

(7.11) Corollary. Let $R \to S$ be a homomorphism of Noetherian rings, let $I \subseteq R$ be an ideal and let M be an S-module. Then $H^i_I(M) \cong H^i_{IS}(M)$ as S-modules.

Proof. Let $I = (x_1, \ldots, x_n)R$ and let y_1, \ldots, y_n be the images of the x’s in S. Then $H^i_I(M)$ may be identified with $H^i(\mathfrak{y}^\infty; M)$, and since $IS = (y_1, \ldots, y_n)S$, $H^i_{IS}(M)$ may be identified with $H^i(\mathfrak{y}^\infty; M)$, and $H^i(\mathfrak{x}^\infty; M) \cong H^i(\mathfrak{y}^\infty; M)$, as noted earlier, because each x_j acts on M in the same way that y_j does. □

Moreover, since we already know the corresponding fact for $H^i(\mathfrak{x}^\infty; \underline{M})$ we have:

(7.12) Corollary. Let R be Noetherian, $I \subseteq R$, and let $\{M_\lambda\}_{\lambda \in \Lambda}$ be a direct limit system of R-modules. Then $H^i_I(\lim_{\lambda} M_\lambda) \cong \lim_{\lambda} H^i_I(M_\lambda)$. □

(7.13) Exercise. Let S be a flat Noetherian R-algebra, where R is Noetherian, and let I be an ideal of R and M an R-module. Then $S \otimes_R H^i_I(M) \cong H^i_I(S \otimes_R M) \cong H^i_{IS}(S \otimes_R M)$. In particular, this holds when S is a localization of R or when S is the m-adic completion of the local ring (R, m, K).
8. LOCAL COHOMOLOGY WITH SUPPORT IN A MAXIMAL IDEAL

We now want to study the case where I is a maximal ideal m of a Noetherian ring R. We first note:

(8.1) Proposition. Let m be a maximal ideal of the Noetherian ring R and let M be an R-module. Let $(A, \mu) = (R_m, mR_m)$.

(a) $H^i_m(M) \cong H^i_\mu(M_m)$.

(b) If (R, m, K) is local and $(\hat{R}, m\hat{R}, \hat{K})$ is its completion, then $H^i_m(M) \cong H^i_{m\hat{R}}(\hat{R} \otimes_R M)$.

(When M is finitely generated, $\hat{R} \otimes_R M$ is isomorphic with the completion \hat{M} of M).

Proof. (a) Since every element of $H^i_m(M)$ is killed by a power of m, the elements of $R - m$ already act invertibly on this module, and so $H^i_m(M) \cong (R - m)^{-1}H^i_m(R) \cong A \otimes_R H^i_m(M) \cong H^i_\mu(A \otimes_R M)$ by Exercise (7.13) above, and this is $H^i_\mu(M_m)$.

(b) Since every element of $H^i_m(M)$ is killed by a power of m, we have that $H^i_m(M)$ is $\hat{R} \otimes_R H^i_m(M)$, and now the result is immediate from Exercise (7.13). □

Thus, the study of local cohomology modules with support in a maximal ideal reduces, in a sense, to the case where the ring is local or even complete local.

(8.2) Exercise. Let R be any ring and let $\to G_i \to \cdots \to G_0 \to 0$ be a left resolution of M by flat modules (i.e., every G_i is R-flat, the complex is acyclic, and Coker $(G_1 \to G_0) \cong M$). Show that for every R-module N, $H_i(G_\bullet \otimes_R N) \cong \text{Tor}_i^R(M, N)$. In other words, flat resolutions, and not merely projective resolutions, may be used to calculate Tor.

The next result is a critical step in the proof of what is known as “local duality.”

(8.3) Lemma. Let R be a Noetherian ring and let I be an ideal which is the radical of $(x_1, \ldots, x_n)R$, where the x_i form a regular sequence in R. Then $H^i_m(M) \cong \text{Tor}_{n-i}^R(M, H^n_I(R))$ functorially in M.

Proof. We may identify $H^i_\mu(M) \cong H^\bullet(x^\infty; M) \cong H^\bullet(K_\bullet(x^\infty; R) \otimes_R M)$ which will give the required Tor, by (7.8), provided that the complex $K_\bullet(x^\infty; R)$, numbered backwards, is a flat resolution of $H^n_I(R)$. Since the $H_i^I(R)$ vanish for $i < \text{depth}_I R = n$, the complex has $H^n_I(R)$ as its only nonvanishing cohomology module, and the result follows from Exercise (8.2), since the complex consists of R-flat modules. □
If \((R, m, K)\) is Cohen-Macaulay and \(I = m\) is the maximal ideal, we may choose the \(x\)'s to be a system of parameters. We therefore have:

Corollary. If \((R, m, K)\) is a Cohen-Macaulay local ring of dimension \(n\), then for every \(R\)-module \(M\), \(H^i_m(M) \cong \text{Tor}^R_{n-i}(M, H^n_m(R))\). \(\square\)

This means that we shall have considerable interest in understanding \(H^n_m(R)\). It turns out that when \((R, m, K)\) is regular, and, more generally, when \((R, m, K)\) is Cohen-Macaulay of type 1 (or Gorenstein) and has Krull dimension \(n\), then \(H^n_m(R)\) is the injective hull of the residue field of \(K\) over \(R\).!!

9. SOME CONNECTIONS WITH THE THEORY OF SCHEMES

Suppose that \(R\) is a Noetherian ring, that \(X = \text{Spec} R\) (as a scheme), that \(I = (x_1, \ldots, x_n)R\) is an ideal, that \(Z = V(I)\), a closed subscheme of \(X\), and that \(U = X - Z = \bigcup_i U_i\) where \(U_i = D(x_i)\). Note that the \(U_i\) form an open cover, by affine schemes, of \(U\). Let \(M\) be any \(R\)-module, let \(M^\sim\) be the corresponding quasicoherent sheaf, and let \(M = M^\sim|_U\) be its restriction to \(U\). Thus, \(M(U_i) \cong M_{x_i}\). More generally, if \(S \subseteq \{1, \ldots, n\}\) then if \(U_S = \bigcap_{i \in S} U_i\) then \(M(U_S) = M_{x(S)}\) where \(x(S) = \prod_{i \in S} x_i\). It follows at once that if we drop the zero degree term \(M\) from the complex \(H^\bullet(x^\infty; M)\) we obtain precisely the Cech complex of \(M\) with respect to the affine open cover \(\{U_i\}_i\), whose cohomology is the same as \(H^i(U, M)\).

From this data one readily obtains that

\[
0 \to H^0(x^\infty; M) \to M \to H^0(U, M) \to H^1(x^\infty; M) \to 0
\]

is exact, while \(H^i(U; M) \cong H^{i+1}(x^\infty; M)\) for all \(i \geq 1\).

Thus,

\[
0 \to H^0_1(M) \to M \to H^0(U; M) \to H^1_1(M) \to 0
\]

is exact while \(H^i(U; M) \cong H^{i+1}_1(M)\) for all \(i \geq 1\). Here, one may think of \(M\) as \(H^0(X, M^\sim)\). The elements of \(H^0_1(M)\) correspond to sections \(s\) of \(M^\sim\) supported only on \(V(I)\) (i.e. the germ \(s_P\) of \(s\) at \(P\) is 0 unless \(P \supseteq I\)). Such sections are the kernel of the restriction map from sections of \(M^\sim\) on \(X\) to sections on \(U\). The cokernel \(H^1_1(M)\) measures the obstruction to extending a section of \(M^\sim\) on \(U\) to a section on all of \(X\).
(9.1) Corollary. If R is a Noetherian ring, M is a finitely generated R-module, and $I \subseteq R$, and if depth$_1M \geq 2$, then every section of M^\sim on $U = \text{Spec } R - V(I)$ extends to a section of M^\sim on Spec R.

10. A MORE GENERAL VERSION OF LOCAL COHOMOLOGY

Let (X, \mathcal{O}_X) be a ringed space. There are enough injectives in the category of \mathcal{O}_X-Modules (sheaves of modules over (X, \mathcal{O}_X)): if one fixes a sheaf \mathcal{F} and chooses an embedding $\mathcal{F}_x \rightarrow E_x$ for each $x \in X$, where E_x is an injective $\mathcal{O}_{X,x}$-module, then \mathcal{F} embeds in \mathcal{E} defined by $\mathcal{E}(U) = \prod_{x \in X} E_x$ in an obvious way, and \mathcal{E} is easily checked to be injective. It is also easy to see that \mathcal{E} is flasque (restriction maps are onto). Since every injective can be embedded in a flasque sheaf (and, hence, is a direct summand of a flasque sheaf), it follows that every injective in the category of \mathcal{O}_X-Modules is flasque. In particular, there are enough injectives in the category of abelian sheaves on X (sheaves of abelian groups: this corresponds to taking \mathcal{O}_X to be the sheaf whose value on U is the ring of locally constant integer-valued functions on U).

Suppose that \mathcal{F} is an \mathcal{O}_X-Module and $Z \subseteq X$ is closed. We write U for $X - Z$. (There is also a version of the theory when Z is only locally closed.) We define the sections of \mathcal{F} supported on Z, which we denote $H^0_Z(X, \mathcal{F})$, as the kernel of the restriction map $H^0(X, \mathcal{F}) \rightarrow H^0(U, \mathcal{F})$. Then $H^0_Z(X, _) \rightarrow H^i_Z(X, _) \rightarrow$ is right exact, and we define $H^i_Z(X, _) \rightarrow H^i_Z(X, \mathcal{F})$ as the ith right derived functor of $H^0_Z(X, _) \rightarrow H^i_Z(X, \mathcal{F})$ in the category of abelian sheaves on X (take an injective resolution of \mathcal{F}, apply $H^0_Z(X, _) \rightarrow H^i_Z(X, \mathcal{F})$ and take cohomology). There is an exact sequence $0 \rightarrow H^0_Z(X, \mathcal{F}) \rightarrow H^0(X, \mathcal{F}) \rightarrow H^0(U, \mathcal{F})$ which is also exact on the right when \mathcal{F} is injective, because injectives are flasque. Applying this to the terms of an injective resolution of \mathcal{F} we may use the snake lemma to obtain a long exact sequence:

$$0 \rightarrow H^0_Z(X, \mathcal{F}) \rightarrow H^0(X, \mathcal{F}) \rightarrow H^0(U, \mathcal{F}) \rightarrow H^1_Z(X, \mathcal{F}) \rightarrow H^1(X, \mathcal{F}) \rightarrow H^1(U, \mathcal{F}) \rightarrow \cdots$$

$$\cdots \rightarrow H^{i-1}(U, \mathcal{F}) \rightarrow H^i_Z(X, \mathcal{F}) \rightarrow H^i(X, \mathcal{F}) \rightarrow H^i(U, \mathcal{F}) \rightarrow H^{i+1}(X, \mathcal{F}) \rightarrow \cdots$$

$H^i_Z(\mathcal{F})$ is called the ith local cohomology of \mathcal{F} with support in Z. H^0_Z gives sections supported on Z, while H^1_Z calculates the obstruction to extending sections of \mathcal{F} on U to all of X. See [GrH]. When $X = \text{Spec } R$ is affine, $\mathcal{F} = M^\sim$, and $Z = V(I)$, we have $H^i(X, \mathcal{F}) = 0$ for $i \geq 1$. (This can be proved easily when R is Noetherian from the
fact that if \(E \) is injective over \(R \), then \(E^\sim \) is flasque. Thus, an injective resolution of \(M \) gives rise to a flasque resolution of \(M^\sim \), which can be used to compute cohomology, since flasque sheaves have vanishing higher cohomology.) From this we can conclude that
\[
H^i_Z(X, \mathcal{F}) \cong H^1_i(M) \text{ for all } i \text{ in this case.}
\]
Thus, in the case, the sheaf-theoretic notion of local cohomology agrees with the notion that we have already defined by purely algebraic means.

When \(X \) is a paracompact and locally contractible topological space, \(G \) is an abelian group, and \(G \) denotes the sheaf of locally constant functions to \(G \), then
\[
H^i_Z(X, G) \cong H^i(X, X - Z; G),
\]
the relative singular cohomology, which “discards” what happens in \(X - Z \). For example, if \(X \) is an \(n \)-manifold and \(Z \) is one point, one gets the same cohomology as if everything not very close to the point \(Z \) were squeezed to a single point. This gives the same result as taking a small \(n \)-ball around \(Z \) and collapsing its boundary to a point, which produces an \(n \)-sphere. This situation motivates the term \textit{local cohomology}.

11. GORENSTEIN RINGS AND LOCAL DUALITY

\textbf{(11.1) Discussion and definitions.} The \textit{type} of a (finitely generated) Cohen-Macaulay module \(M \) over a local ring \((R, m, K)\) is equivalently, the dimension as a \(K \)-vector space of
\[
\operatorname{Ext}^d_R(K, M),
\]
where \(d = \dim M \), or the dimension of the socle in \(M/(x_1, \ldots, x_d)M \), where \(d = \dim M \) and \(x_1, \ldots, x_d \) is any maximal \(M \)-sequence in \(m \). Note that if \(x \) is a nonzerodivisor on \(M \), \(\mathcal{M} \), and \(M/xM \) have the same type. The type is unaffected by completion. If \(R \) is regular, we leave it as an exercise to show that the type is the least number of generators of \(\operatorname{Ext}^{n-d}(M, R) \), where \(n = \dim R \) (so that \(n - d = \operatorname{pd}_R M \)); it is also the last nonvanishing rank of a free module in a minimal free resolution of \(M \) over \(R \). The type cannot increase when one localizes.

Thus, a Cohen-Macaulay local ring has a type, and the type can only decrease as one localizes.

It follows that if a Cohen-Macaulay local ring has type one, then all of its localizations have type one. Such a local ring is called \textit{Gorenstein}. A Noetherian ring is called \textit{Gorenstein} if all of its localizations at prime (equivalently, maximal) ideals are Gorenstein. (We shall eventually show that a local ring is Gorenstein if and only if it has finite injective dimension as a module over itself — this is sometimes taken to be the definition.)
(11.2) Proposition. Let (R, m, K) be a local ring.

(a) If x_1, \ldots, x_k is a regular sequence in R, then the local ring R is Gorenstein if and only if $R/(x_1, \ldots, x_k)R$ is Gorenstein.

(b) If R is Artin, then R is Gorenstein if and only if R is an injective R-module (we have already seen that this holds if and only if the socle of R is a one-dimensional K-vector space).

(c) R is Gorenstein if and only if its completion is Gorenstein.

(d) If R is regular then R is Gorenstein. Hence, if R is regular then and x_1, \ldots, x_k is part of a system of parameters, then $R/(x_1, \ldots, x_k)R$ is Gorenstein. (Rings of this form are called complete intersections. Some authors include in the definition rings whose completion is of this form.)

Proof. (a) This holds because both the Cohen-Macaulay property and the type are unaffected.

(b) This part is immediate: zero-dimensional rings are Cohen-Macaulay and the type is the K-dimension of the socle.

(c) This is clear, since both the Cohen-Macaulay property and the type are unaffected by completion.

(d) We know that fields are Gorenstein, and so the Gorenstein property for a regular ring R of dimension n in which x_1, \ldots, x_n generate the maximal ideal follows from the fact that $R/(x_1, \ldots, x_n)R$ is Gorenstein: the x_i form an R-sequence, and we may apply the “if” part of (a). The second statement then follows from the “only if” part of (a). □

(11.3) Discussion. If x_1, \ldots, x_n form a regular sequence on the R-module M, it is easy to see that if $(x_1 \cdots x_n)u \in (x_1^{t+1}, \ldots, x_n^{t+1})M$, then $u \in (x_1^t, \ldots, x_n^t)M$. For if $(x_1 \cdots x_n)u = \sum_{j=1}^n x_j^{t+1}v_j$ then $x_n(x_1 \cdots x_{n-1}u - x_n^tv_n) \in (x_1^{t+1}, \ldots, x_n^{t+1})M$, and so $x_1 \cdots x_{n-1}u \in (x_1^{t+1}, \ldots, x_{n-1}^{t+1})M$. A straightforward induction on $n - i$ enables one to establish that $x_1 \cdots x_iu \in (x_1^{t+1}, \ldots, x_i^{t+1}, x_{i+1}^t, \ldots, x_n^t)M$ for $i = n, n - 1, \ldots, 0$ (it is the case $i = 0$ that we want). We are using that any powers of the x’s also form an M-sequence, and also that if y_1, \ldots, y_n form an M-sequence, then each y_i is a nonzerodivisor on $M/(y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n)M$, even though the regular sequence may not be permutable.

Phrased slightly differently, this result asserts that multiplication by $x = x_1 \cdots x_n$ on M induces an injective map from $M_t \to M_{t+1}$ for each t, where $M_t = M/(x_1^t, \ldots, x_n^t)M$.
Now \(M_t = H^n(x^t; M) \), and the direct limit system \(\cdots \to M_t \xrightarrow{x} M_{t+1} \to \cdots \) is precisely the one we need to calculate \(H^n_{(x^t)}(M) \). Thus, when the \(x \)'s form an \(M \)-sequence, we can view \(H^n_{(x^t)}(M) \) as the direct limit of the \(M_t \) via injective maps: a sort of increasing union of the \(M_t \). We next observe:

\[\text{(11.4) Lemma.} \ \text{Let} \ (R,m,K) \ \text{be local and let} \ q_1 \supseteq \cdots \supseteq q_t \supseteq \cdots \ \text{be a non-increasing sequence of} \ m \text{-primary ideals cofinal with the powers of} \ m. \ \text{Let} \ R_t = R/q_t. \ \text{Let} \ E \ \text{be an} \ R \text{-module which is an increasing union of submodules} \ E_t \ \text{such that for every} \ t, \ E_t \cong E_{R_t}(K). \ \text{Then} \ E \cong E_R(K). \]

\[\text{Proof.} \ \text{Fix a copy} \ G \ \text{of} \ E_R(K) \ \text{and let} \ G_t \ \text{denote the annihilator of} \ q_t \ \text{in} \ G. \ \text{Then the} \ G_t \ \text{form an increasing sequence of submodules of} \ G \ \text{whose union is} \ G. \ \text{We know that for each fixed} \ t \ \text{there is an isomorphism} \ \alpha_t : q_t \to E_t. \ \text{We shall prove by induction on} \ t \ \text{that there is a sequence of isomorphisms} \ \beta_t : E_t \to G_t \ \text{such that for all} \ t, \ \beta_{t+1}|_{G_t} = \beta_t. \ \text{This will suffice to prove the theorem, since the union of the graphs of the} \ \beta_t \ \text{then gives an isomorphism of} \ E \ \text{with} \ G. \ \text{We take} \ \beta_1 = \alpha_1. \ \text{Suppose that} \ \beta_1, \ldots, \beta_t \ \text{have been constructed. Note that} \ \beta_t \ \text{determines all its predecessors. It will suffice to show that we can extend} \ \beta_t \ \text{to an isomorphism of} \ E_{t+1} \ \text{with} \ G_{t+1}. \ \text{Let} \ \gamma \ \text{denote the restriction of} \ \alpha_{t+1} \ \text{to} \ E_t. \ \text{Since} \ E_t \ \text{is killed by} \ q_t, \ \text{so is} \ \gamma(E_t), \ \text{and so it must be contained in} \ G_t. \ \text{Since} \ \alpha_{t+1} \ \text{is injective,} \ \gamma(E_t) \ \text{has the same length as} \ E_t, \ \text{and, hence, the same length as} \ G_t. \ \text{It follows that} \ \gamma(E_t) = G_t. \ \text{Let} \ \gamma^{-1} \ \text{denote the inverse of} \ \gamma \ \text{as a map from} \ E_t \ \text{to} \ G_t. \ \text{Then} \ \gamma^{-1}|_{\beta_t} : E_t = E_t \ \text{is an automorphism of the injective hull of} \ R_t, \ \text{and so coincides with multiplication by a unit} \ \zeta \ \text{of} \ R_t. \ \text{We may lift that unit to a unit} \ \eta \ \text{of} \ R_{t+1}. \ \text{We then take} \ \beta_{t+1} = \alpha_{t+1}\eta. \ \text{Restricting to} \ E_t \ \text{gives} \ \gamma(\beta_t) = \beta_t, \ \text{as required.} \ \square \]

\[\text{(11.5) Theorem.} \ \text{Let} \ (R,m,K) \ \text{be a Gorenstein local ring of dimension} \ n \ \text{and suppose that} \ x_1, \ldots, x_n \ \text{is any system of parameters. Then} \ H^n_m(R) = \lim_t R/(x_1^t, \ldots, x_n^t)R \ \text{(where the successive maps are included by multiplication by} \ x = x_1 \ldots x_n) \ \text{is an injective hull for} \ K. \ \text{If} \ u \ \text{generates the socle in} \ R/(x_1, \ldots, x_n)R, \ \text{then} \ x_1^t \ldots x_n^t u \ \text{generates the socle in} \ R/(x_1^{t+1}, \ldots, x_n^{t+1})R. \]

\[\text{In particular, this is true when} \ R \ \text{is regular, and in that case we may choose the} \ x_i \ \text{to be a minimal set of generators of the maximal ideal of} \ R. \]

\[\text{Proof.} \ \text{We apply (11.4) with} \ q_t = (x_1^t, \ldots, x_n^t)R. \ \text{The first statement is immediate if we know that} \ R/(x^t)R \ \text{is an injective hull for} \ K \ \text{over itself. But since} \ R \ \text{is Gorenstein and} \ x^t \ \text{is a system of parameters,} \ R/(x^t)T \ \text{is a zero-dimensional Gorenstein ring, and hence} \]
it itself is the injective hull of \(K \) over itself. It follows that there is a one-dimensional socle in each of the modules \(R/(x^t)R \). Since the map \(R/(x)R \to R/(x^{t+1})R \) induced by multiplication by \(x_1 \ldots x_n \) is injective, it must send the copy of \(K \) in \(R/(x)R \) to the copy of \(K \) in \(R/(x^{t+1})R \). This establishes the second statement. The statement about the case of a regular ring is then obvious. □

(11.6) Remarks. Let \(x_1, \ldots, x_n \in R \) and let \(M \) be any \(R \)-module. Let \(I = (x_1, \ldots, x_n)R \). Then the right exactness of \(\otimes_R \) implies that \(H^n_I(M) \cong H^n_I(R) \otimes_R M \), for \(H^n_I(M) \cong \lim_t M/(x^tM) \cong \lim_t \left((R/(x^tR)) \otimes_R M \right) \cong \left(\lim_t (R/(x^tR)) \right) \otimes_R M \cong H^n_I(R) \otimes_R M \).

While, from one point of view, \(H^n_I(R) \) is a direct limit, we may take the different point of view that it is \(H^n(x^{\infty}; R) \), i.e., that is is the cokernel of the map \(\bigoplus_j R_{y(j)} \to R_x \), where \(x \) denotes the product \(x_1 \ldots x_n \) and \(y(j) \) denotes the product of the \(x_i \) with \(x_j \) omitted. The maps on the various summands are induced by the obvious maps \(R_{y(j)} \to R_x \), each with a certain sign, but the signs don’t affect the image, which is \(\Sigma_j \text{Im} R_{y(j)} \). This means that \(H^n_I(R) \cong R_x/\bigoplus_j R_{y(j)} \), where \(x = x_1 \ldots x_n \). Likewise, it may also be identified with the tensor product over \(R \) of the \(R \)-modules \(R_{x_i}/R \) (and note that \(R_{x_i}/R \cong H^1_{x_i}(R) \)).

In particular, when \(R \) is a discrete valuation ring, \(H^1_m(R) \cong R_x/R \cong L/R \), where \(L \) is the fraction field of \(R \). This is also the injective hull of \(K \).

When \(R \cong K[[x_1, \ldots, x_n]] \), \(R_x \) may be identified with formal power series involving monomials with both positive and negative exponents, where there is a lower bound for all negative exponents. When one kills the sum of the \(R_{y(j)} \) one kills all series such that in every term, the exponent on one or more variables is not strictly negative. Thus, \(H^m_m(R) \cong E_R(K) \) may be identified with all polynomials in \(x_1^{-1}, \ldots, x_n^{-1} \) with the property that in every term, every variable occurs. One multiplies such a polynomial by a power series by forcing a formal distributive law: there are \(a \text{ priori} \) infinitely many terms, but all but finitely many turn out to have a nonnegative exponent on some variable, and so are zero. The socle in this module is is generated by \(x_1^{-1} \ldots x_n^{-1} \). (There is a variant formulation in which one uses \(xR_x/(x(\Sigma_j \text{Im} R_{y(j)})) \) instead: this is isomorphic to the module discussed just previously, and is the same as \(R_x/(x\Sigma_j \text{Im} R_{y(j)}) \). The quotient may now be identified with \(K[x_1^{-1}, \ldots, x_n^{-1}] \), so that one winds up with the nonpositive monomials instead of the strictly negative monomials. In this version, the image of \(1 \) represents a generator of the socle.)

Once one understands \(E_R(K) \) when \(R \) is a complete regular local ring, one may argue that one understands \(E_A(K) \) for any local ring \(A \): completing \(A \) doesn’t change the inject-
tive hull of K, and the completed ring A may be written as R/I with R complete, regular, and local. Now think of $E_A(K)$ as the annihilator of I in $E_R(K)$. This is satisfactory for some purposes but there are problems for which it is not a very useful point of view.

(11.7) Lemma. Let P be a finitely generated projective module and W, N be any modules over R. Then $P \otimes \text{Hom}(W, N) \cong \text{Hom}(\text{Hom}(P, W), N)$ functorially in P, W, M.

Proof. There is a map $\theta_P : P \otimes \text{Hom}(W, N) \to \text{Hom}_R(\text{Hom}_R(P, W), N)$ that sends $u \otimes \alpha$ to the map that takes $f \in \text{Hom}(P, W)$ to $\alpha f(u)$. Since $\theta_P \oplus \theta_Q \cong \theta_P \oplus \theta_Q$ the problem of showing that this map is an isomorphism when P is finitely generated projective reduces to the case where P is a finitely generated free module and then to the case $P = R$, which is easily checked. □

(11.8) Theorem (local duality for Gorenstein rings). Let (R, m, K) be a local Gorenstein ring of dimension n, let $E = H^m_n(R)$, which is an injective hull for K, and let $^\vee$ be $\text{Hom}_R(_ , E)$. For finitely generated modules M, $H^i_m(M) \cong \text{Ext}_R^{n-i}(M, R)^\vee$ as functors in M.

Proof. We have already observed that $K^\bullet(\varprojlim R; R)$ is a flat resolution of $H^m_n(R)$ even if the hypothesis is only that the ring is Cohen-Macaulay. In the present case, we know that the ring is Gorenstein, which carries the additional information that $H^m_n(R) \cong E_R(K)$. Thus $H^i_m(M) \cong \text{Tor}_n^R(M, E)$. On the other hand, let P_\bullet be free resolution of M by finitely generated free modules. Then $\text{Ext}^\bullet(M, R)$ is the cohomology of $\text{Hom}(P_\bullet, R)$, and since E is injective, $\text{Ext}^\bullet(M, R)^\vee$ is the cohomology of $\text{Hom}_R(\text{Hom}_R(P_\bullet, R), E)$, and this complex is isomorphic with $P_\bullet \otimes_R E$ by Lemma (11.7) with $W = R, N = E$, whose homology gives the modules $\text{Tor}_\bullet(M, E)$. Thus, $\text{Ext}^{n-i}(M, R)^\vee \cong \text{Tor}_{n-i}(M, E)$. □

(11.9) Corollary. Let R be a Noetherian ring and m a maximal ideal. Then for every finitely generated R-module M, $H^i_m(M)$ (which is actually a module over R_m) has DCC.

Proof. The issues are unaffected by localization at m. Thus, we may assume that (R, m, K) is local. They are likewise unaffected by replacing R, M by their completions. Thus, we may assume that R is a complete local ring. But then R is a homomorphic image of a complete regular local ring (S, n, K). Now, $H^i_m(M) \cong H^i_n(M)$, and thus it suffices to prove the result when R is a regular local ring. But then $H^i_m(M)$ is the Matlis dual of $\text{Ext}^{d-i}_R(M, R)$ and so has DCC. □

Before we prove our next major result, we want to establish:
Lemma. Let M be a module of dimension d over a Noetherian ring R, and suppose that every proper homomorphic image of M has smaller dimension than M. Then $S = R/{\text{Ann}_R M}$ is a domain, and M is a torsion-free module of rank one over S.

Proof. We might as well replace R by S and assume that M is faithful. Choose P to be a minimal prime of R such that $\dim R/P = \dim R$. Then $P \in \text{Ass } M$, since M is faithful. We can map M_P/PM_P onto a copy of R_P/PR_P. Let N be the kernel of the composite map $M \to M_P/PM_P \to R_P/PR_P$. Then M/N embeds into R_P/PR_P, and the image is not zero, since it generates R_P/PR_P as an R_P-module. It follows that $M = M/N$, since M/N is non-zero and torsion-free over R/P. Moreover, it is now clear that $M = M/N$ has rank one. □

Theorem. Let M be a finitely generated module over a local ring (R, m, K) and let $d = \dim M$ ($= \dim R/({\text{Ann}_R M})$). Then $H^d_m(M) \neq 0$, while $H^i_m(M) = 0$ for $i > d$.

Proof. First, we may replace R by $R/{\text{Ann}_R M}$ without affecting any relevant issues. Thus, we may assume that M is faithful and so $\dim M = \dim R$. Since m is then the radical of an ideal with d generators (use a system of parameters), it follows at once that $H^i_m(M) = 0$ for $i > d$. It remains to see that $H^d_m(M) \neq 0$.

To this end, first replace R, M by their completions: this does not affect any relevant issue. Second, choose $N \subseteq M$ maximal such that $\dim M/N = d$. The tail end of the long exact sequence for local cohomology yields that $H^d_m(M) \to H^d_m(N, M) \to H^{d+1}_m(N)$ is exact, and since H^{d+1}_m is zero for all R-modules, the first map is surjective. Thus, it suffices to show that $H^d_m(M/N) \neq 0$ and so we may replace M by M/N and therefore assume that killing any nonzero submodule of M lowers its dimension. Again, replace R by $R/{\text{Ann}_R M}$. By Lemma (11.10) above, R is then a domain and M is a torsion-free R-module of rank one, i.e., M is isomorphic with an ideal of R. But then R is module-finite over a regular ring A of the same dimension, and M is also torsion-free as an A-module. The maximal ideal μ of A extends to an m-primary ideal of R, and so $H^d_\mu(M) \cong H^d_m(M)$.

Thus, it will suffice to show that if M is a nonzero torsion-free module over a regular local ring (R, m, K) of dimension d, then $H^d_m(M) \neq 0$. Suppose that M is torsion-free of rank r. Choose r elements of M that are linearly independent over R. These yield an embedding $R^r \to M$ so that the cokernel is a torsion module: suppose it is killed by the nonzero element c. Then $M \cong cM \subseteq R^r$ is an embedding $M \to R^r$ such that the cokernel C is torsion (c kills it). The long exact sequence for local cohomology yields...
\[H^d_m(M) \to H^d_m(R^r) \to H^d_m(C) = 0 \] (because \(\dim C \leq d - 1 \)). Thus, it will suffice to see that \(H^d_m(R^r) = H^d_m(R)^r \neq 0 \), which we already know since \(H^d_m(R) \cong E_R(K) \). \(\square \)

12. COHOMOLOGICAL DIMENSION

We now have considerable information about the modules \(H^\bullet_m(M) \) when \(m \) is a maximal ideal and \(M \) is a finitely generated module. They have DCC, and their study reduces to the case where \(R \) is local or, even, complete local. The first nonvanishing \(H^i_m(M) \) occurs when \(i = \text{depth } M \), and the last when \(i = \dim M \). When \(I \) is not a maximal ideal, it is much harder to study the modules \(H^i_m(M) \) even if \(M = R \). The first nonvanishing one still occurs at depth \(_IM \). Where the highest nonvanishing one occurs is a difficult problem. Certainly, all of the local coholomogy modules vanish if \(i \) exceeds the least number of generators of \(I \) up to radicals. We first prove a lemma and then note that one at least has the statements in Proposition (12.3) below.

(12.1) Lemma

Let \((R, m, K)\) be a local ring of Krull dimension \(n \) and let \(I \subseteq m \) be any ideal. Then \(I \) is the radical of an ideal generated by at most \(n \) elements.

Proof. Choose \(x_1 \in I \) so that \(x_1 \) is not in any minimal prime of \(R \) which does not contain \(I \) (we can do this, since there are only finitely many). Suppose that \(x_1, \ldots, x_k \in I, k \geq 1 \), have been chosen so that any prime of height \(k - 1 \) or less that contains \((x_1, \ldots, x_k)R\) must contain \(I \). If \(k < n \), first note that any prime of height \(k \) that contains \((x_1, \ldots, x_k)R\) and not \(I \) must be a minimal prime of \((x_1, \ldots, x_k)R\) : otherwise, it contains a minimal prime which will contain \((x_1, \ldots, x_k)R\) and be of height \(k - 1 \) or less and still not contain \(I \). Thus, the set of height \(k \) primes containing \((x_1, \ldots, x_k)R\) and not \(I \) is finite. Now choose \(x_{k+1} \) in \(I \) and not in any of them. The recursion stops when \(k = n \). Since the only height \(n \) prime in the ring is the maximal ideal, every prime that contains \((x_1, \ldots, x_k)R\) contains \(I \). Since \((x_1, \ldots, x_k)R \subseteq I \), it follows that the two ideals have the same radical. \(\square \)

(12.2) Remark

A slight variation of the proof shows that every ideal in a Noetherian ring of Krull dimension \(n \) is the radical of an ideal generated by \(n + 1 \) elements.

(12.3) Proposition

Let \(R \) be a Noetherian ring, and \(I \subseteq R \) an ideal.

(a) If \(H^i_I(R) = 0 \) for \(i > d \), then \(H^i_I(M) = 0 \) for every \(R \)-module \(M \) for \(i > d \).

(b) If \(H^i_I(R/P) = 0 \) for all \(i > d \) then for every \(R \)-module \(M \) such that every element is killed by a power of \(P \), \(H^i_I(M) = 0 \) for all \(i > d \).
(c) Let S be a set of primes of R such that if $P \in \text{Ass } M$ then P contains a prime in S. Suppose that for all $P \in S$, $H^i_j(R/P) = 0$ for $i > d$. Then $H^i_j(M) = 0$ for all $i > d$. If M is a finitely generated module we may choose S to be the set of all minimal primes of R.

(d) For every R-module M, $H^i_j(M) = 0$ for $i > \dim R$.

(e) For every R-module M, $H^i_j(M) = 0$ for $i > \dim(R/\text{Ann}M)$.

Proof. (a) Assume not and let j be the least integer $> d$ such that $H^j_i(M) \neq 0$ for some R-module M (note that $j \leq$ the number of generators of I). There is a short exact sequence $0 \rightarrow M' \rightarrow F \rightarrow M \rightarrow 0$ where F is free. Since $H^{j+1}_i(M') = 0$, the long exact sequence for local cohomology shows that $H^j_i(F) \rightarrow H^j_i(M)$ is onto, and $H^j_i(F) = 0$, since F is R-free.

(b) By a direct limit argument, we may assume that M is finitely generated and so killed by a power of P itself. Then M has a finite filtration in which each factor is killed by P, so that each factor is an (R/P)-module. By the long exact sequence for local cohomology, it suffices to prove the result for each factor, and this follows from (a).

(c) Again, we may replace M by a finitely generated submodule. Then M has a finite filtration in which each factor is killed by a prime in Ass M, and hence by a prime of S. The result now follows from (b).

(d) We may replace M by R. If there is a counterexample we may localize to produce a local counterexample. Thus, we may assume that R is a local ring. But then the result follows from Lemma 9.3, since the expansion of I to the local ring is generated up to radicals by at most n elements (or else it is the unit ideal, which makes all local cohomology vanish).

(e) This is immediate, since we may also view M as a module over $R/(\text{Ann}M)$ (replacing I by its expansion) without affecting the local cohomology. □

We shall refer to the least integer d such that $H^i_j(M) = 0$ for all $i > d$ and all R-modules M as the **cohomological dimension** of the pair $(R; I)$. This implies that $H^i(X, \mathcal{F}) = 0$ for every quasicoherent sheaf \mathcal{F} on $X = \text{Spec } R - V(I)$ if $i > d - 1$, provided $d > 1$.

Thus, if (R, m, K) is local, the cohomological dimension of the pair $(R; m)$ is $\dim R$.

13. MORE ABOUT GORENSTEIN RINGS

Our next objective is to show that a local ring has finite injective dimension as a module over itself if and only if it is Cohen-Macaulay of type 1, i.e., iff it is Gorenstein.
(13.1) **Theorem.** Let \((R, m, K)\) be a Gorenstein local ring of Krull dimension \(n\). Then the minimal injective resolution \(E^\bullet\) of \(R\) has length \(n\), and for \(0 \leq i \leq n\), the module \(E^i\) is the direct sum of the injective hulls of all the primes \(P\) of \(R\) of height \(i\). Thus, \(\text{id}_R R = \dim R\).

Proof. Let \(P \subseteq R\) be a prime of height \(i\). It suffices to show that \(\dim_{\kappa} \text{Ext}^j_{R_P}(\kappa, R_P) = 1\) if \(j = i\) and 0 otherwise, where \(\kappa = R_P/PR_P\). Replacing \(R\) by \(R_P\), we see that we might as well assume that \(P = m, \kappa = K\). The modules \(\text{Ext}^j_R(K, R)\) are the Matlis duals of the local cohomology modules \(H^{n-j}_m(K)\). Since \(\dim K = 0\), only one of these is nonvanishing, when \(j = n\), and that one is \(H^0_m(K) \cong K\). Since \(K^\vee \cong K\), this proves the result. \(\square\)

We eventually want to prove the converse. We first note:

(13.2) **Proposition.** Let \((R, m, k)\) be local and let \(M\) be a finitely generated \(R\)-module. Then \(\text{id}_R M \leq d \iff \text{Ext}^i(K, M) = 0\) for \(i > d\).

Proof. \(\text{id}_R M \leq d \iff \text{id}_R \text{cosy}z^d M \leq \text{Ext}^d(R/I, \text{cosy}z^d M) = 0\) for all ideals \(I\) of \(R\) and all \(i > d\). Thus, it will suffice to show that \(\text{Ext}^i_R(N, M) = 0\) for all \(i > d\) and all finitely generated \(R\)-modules \(N\). If not, we may choose \(N\) of smallest dimension giving a counterexample. Since \(N\) has a prime filtration we obtain a counterexample of that dimension in which \(N\) has the form \(R/P\) for some prime \(P\) of \(R\). We know \(P \neq m\): thus, we may choose \(x \in m - P\), and then we have a short exact sequence
\[
0 \to R/P \xrightarrow{x} R/P \to C \to 0
\]
where \(\dim C < \dim R/P\). For \(i > d\) the long exact sequences for \(\text{Ext}\) then yields
\[
0 = \text{Ext}^i_R(C, M) \to \text{Ext}^i_R(R/P, M) \xrightarrow{x} \text{Ext}^i_R(R/, M) \to \text{Ext}^{i+1}_R(R/P, C) = 0,
\]
and Nakayama’s lemma then implies that \(\text{Ext}^i_R(R/P, M) = 0\), a contradiction. \(\square\)

(13.3) **Lemma.** Let \((R, m, K)\) be a local ring such that \(\text{id}_R R\) is finite and \(\dim R \geq 1\).

(a) \(\text{depth } R \geq 1\).

(b) If \(x \in R\) is not a zerodivisor and \(S = R/\langle x \rangle\), then \(\text{id}_S S\) is finite.

Proof. (a) If not, then there is a short exact sequence \(0 \to K \to R \to R \to 0\). Let \(d = \text{id } R\). Then \(d \geq 1\) (if \(R\) itself is injective, we already know that \(\dim R = 0\)), and applying \(\text{Hom}(_, R)\) we obtain
\[
0 = \text{Ext}^d_R(R, R) \to \text{Ext}^d_R(K, R) \to \text{Ext}^{d+1}_R(R, R) = 0
\]
which shows that $\text{Ext}^j_R(K, R) = 0$ for $j \geq d$. But then the preceding proposition implies that $\text{id}_R R < d$, a contraction.

(b) Let E^\bullet be an injective resolution of R of length, say, d. Then the cohomology of $\text{Hom}_R(S, E^\bullet)$ is $\text{Ext}^\bullet_R(S, R)$, and this may be calculated from the free resolution

$$0 \rightarrow R \xrightarrow{\cdot x} R \rightarrow S \rightarrow 0.$$

We have that $\text{Hom}_R(S, R) = 0$, that $\text{Ext}^1_R(S, R) \cong S$, and that $\text{Ext}^i_R(S, R) = 0$ if $i \geq 2$. Next note that $E'_i = \text{Hom}_R(S, E_i)$ is an injective S-module. Now, E'_0 injects into E'_1 and since it is injective over S, it is a direct summand. Thus, E'_1/E'_0 is injective over S, and the sequence

$$0 \rightarrow E'_1/E'_0 \rightarrow E'_2 \rightarrow \ldots \rightarrow E'_d \rightarrow 0$$

is exact except possibly at E'_1/E'_0 and consists of S-injective modules. Thus, it is an injective resolution over S of

$$\text{Ker} (E'_1/E'_0 \rightarrow E'_2) \cong (\text{Ker} E'_1 \rightarrow E'_2)/E'_0 \cong H^1(\text{Hom}_R(S, E^\bullet)) \cong \text{Ext}^1_R(S, R) \cong S.$$

□

(13.4) Theorem. A local ring (R, m, K) has finite injective dimension as a module over itself iff it is Cohen-Macaulay of type 1, i.e., Gorenstein, in which case $\text{id}_R R = \dim R$ and the resolution is as described in Theorem (13.1).

Proof. All we need to show is that if $\text{id}_R R$ is finite then R is Cohen-Macaulay of type 1. We proceed by induction on $\dim R$.

First suppose that $\dim R = 0$. Consider a minimal injective resolution of R. By calculating the Bass numbers from the finite resolution, it follows that the minimal resolution is at least as short. There is only one indecomposable injective, $E = E_R(K)$, and each module in the minimal resolution is a finite direct sum of copies of E. Applying $\text{Hom}_R(_ , E)$ we obtain a finite projective resolution of E over R, which shows that $\text{pd}_R E$ is finite. Since $\text{depth} R = 0$, we have that E must be R-free, i.e. $E \cong R^t$ for some t, and since E and R have the same length we must have that $t = 1$. Thus, $R \cong E$, which means that R is self-injective. In the zero-dimensional case we already know that this is equivalent to the condition that R have type 1, and we are done.

Now suppose that $\dim R > 0$. By part (a) of the lemma above, we know that $\text{depth} R > 0$, and so we can choose a nonzerodivisor $x \in R$. By part (b) of the lemma, $S = R/\langle x \rangle R$
also has finite injective dimension as a module over itself. By the induction hypothesis, S is Cohen-Macaulay of type 1. But then, since x is a nonzerodivisor in R, R is Cohen-Macaulay type 1. □

(13.5) Exercise. Show that for a Noetherian ring R, $\text{id}_R R$ is finite iff all of its local rings (respectively, its local rings at maximal ideals) are Gorenstein and $\dim R$ is finite, in which case $\text{id}_R R = \dim R$.

14. CANONICAL MODULES AND LOCAL DUALITY
OVER COHEN-MACAULARY RINGS

(14.1) Definition. We shall say that a finitely generated module M over a Cohen-Macaulay local ring (R, m, K) of dimension d is a canonical module for R if its Matlis dual is $\cong H^d_m(R)$. If R is complete then there is always a canonical module, namely the Matlis dual of $H^d_m(R)$. If R is Gorenstein local, then R itself is a canonical module for R.

There are pathological examples of Cohen-Macaulay local rings which have no canonical module. (Their completions have a canonical module, but in the bad cases this module is not the completion of a finitely generated module over the original ring.) We shall see later that the canonical module is unique up to non-unique isomorphism. However, before that, we want to explain its use in establishing a form of local duality for a Cohen-Macaulay ring R. We shall usually write ω_R for a canonical module over the ring R, or, simply, ω, if R is understood.

(14.2) Theorem (local duality over a Cohen-Macaulay ring). Let (R, m, K) be a Cohen-Macaulay local ring of dimension d, let $E = E_R(K)$ be an injective hull of K over R, let ω_R be a canonical module, and fix an isomorphism of $\omega_R^\vee \cong H^d_m(R)$, where $_ \vee$ denotes $\text{Hom}_R(_, E)$. Then for all finitely generated R-modules M, there is an isomorphism $H^i_m(M) \cong \text{Ext}^{d-i}_R(M, \omega_R)^\vee$, functorial in M.

Proof. Recall that we know over any Cohen-Macaulay ring that

$$H^i_m(M) \cong \text{Tor}^{d-i}_R(M, H^d_m(R)) \cong \text{Tor}^{d-i}_R(M, \omega^\vee).$$

The rest of the proof is exactly the same as in the case where R is Gorenstein: if P_\bullet is a resolution of M by finitely generated projectives we may identify $P_\bullet \otimes \omega^\vee$ with
\[\text{Hom}_R(\text{Hom}_R(P_\bullet, \omega), E) = \text{Hom}_R(P_\bullet, \omega)^\simeq \] using Lemma (11.7), with \(W = \omega \) and \(N = E \), and since \(^\simeq \) commutes with the calculation of (co)homology we may identify \(\text{Tor}_d^R(M, \omega^\simeq) \) with \(\text{Ext}_d^R(M, \omega^\simeq) \). \[\square \]

We also have:

Theorem. Let \((R, m, K)\) be Cohen-Macaulay and a homomorphic image of a Gorenstein ring \(S \). Then \(S \) may be chosen to be local, and if \(h = \dim S - \dim R \) then \(\text{Ext}_S^h(R, S) \) is a canonical module for \(R \).

More generally, if \((S, n, L) \to (R, m, K)\) is a local homomorphism of local rings such that \(R \) is module-finite over the image of \(S \), \(R \), \(S \) are Cohen-Macaulay, \(S \) has canonical module \(\omega_S \), and \(h = \dim S - \dim R \) then \(\text{Ext}_S^h(R, S) \) is a canonical module for \(R \).

In particular, if \(S \) is Gorenstein (e.g., if \(S \) is regular) and \(R \) is a local module-finite extension of \(S \) that is Cohen-Macaulay, then \(\text{Hom}_S(R, S) \) is a canonical module for \(R \) over \(S \). E.g. if \(R \) is complete, Cohen-Macaulay, local and either equicharacteristic or a domain, then we may choose \(S \subseteq R \) regular such that \(R \) is module-finite over \(S \), then \(\text{Hom}_S(S, R) \) is a canonical module for \(R \).

Proof. In the situation of the first paragraph, one may replace \(S \) by its localization at the contraction on \(m \). We now assume that we are in the situation of the second paragraph. Let \(d = \dim R \), \(s = \dim S \). Then \(\text{Ext}_S^h(R, \omega_S) \) is a finitely generated \(S \)-module and also, because of the \(R \)-module structure of the first variable, is an \(R \)-module and, hence, a finite generated \(R \)-module. By local duality over \(S \) we have that the dual of \(\text{Ext}_S^h(R, \omega_S) \) into \(E_S(L) \) is \(H_n^{s-h}(R) = H_n^d(R) \cong H_m^d(R) \). But for any \(R \)-module \(M \),

\[\text{Hom}_S(M, E_S(L)) \cong \text{Hom}_S(M \otimes_R E_S(L)) \]

\[\cong H_R(M, \text{Hom}_S(R, E_S(L)) \cong \text{Hom}_R(M, E_R(K)), \]

since \(\text{Hom}_S(R, E_S(L)) \cong E_R(K) \), and applying this with \(M = \text{Ext}_S^h(R, \omega_S) \), we obtain \(\text{Hom}_R(\text{Ext}_S^h(R, \omega_S), E_R(K)) \cong H_m^d(R) \), as required.

The statements of the third paragraph are then immediate. \[\square \]

Since the local rings that come up in algebraic geometry, number theory, several complex variables, etc. are almost always homomorphic images of regular rings, the Cohen-Macaulay rings that come up will almost always have canonical modules.
Lemma. Let M and N be finitely generated R-modules, where (R, m, K) is local. If their m-adic completions are isomorphic, then M and N are isomorphic.

Proof. Hom$_{\hat{R}}(\hat{M}, \hat{N}) \cong \hat{R} \otimes_R$ Hom$_R(M, N) \cong$ Hom$_R(M, N)$. If $\phi: \hat{M} \to \hat{N}$ is onto we may choose $f: M \to N$ such that $\phi \equiv \hat{f}$ mod mHom$_R(M, N)$. It follows easily that $N \subseteq \text{Im } f + mN$, since ϕ is onto, and then, by Nakayama's lemma, f is onto. Since each of \hat{M}, \hat{N} can be mapped onto the other, the same is true for each of M, N. Say $f: M \to N$ and $g: N \to M$ are both onto. Then $gf: M \to M$ is onto, and hence, since M is finitely generated, gf is one-to-one. Hence, f is one-to-one and so must be an isomorphism. □

The following result summarizes much of the behavior of canonical modules.

Theorem. Let (R, m, K) be a Cohen-Macaulay local ring of Krull dimension d.

(a) A finitely generated R-module ω is a canonical module for R if and only if $\hat{\omega}$ is a canonical module for \hat{R}.

(b) If ω, ω' are canonical modules for R, then $\omega \cong \omega'$.

(c) If ω is a canonical module for R and x_1, \ldots, x_k is a regular sequence in R, then x_1, \ldots, x_k is a regular sequence on ω and $\omega/(x_1, \ldots, x_k)\omega$ is a canonical module for $R/(x_1, \ldots, x_k)R$. In particular, depth $\omega = \dim R$, and ω is a Cohen-Macaulay module.

(d) If $\dim R = 0$, then a canonical module for R is the same as an injective hull for K.

(e) A finitely generated R-module ω is a canonical module for R if and only if depth $\omega = \dim R$ and for some (equivalently, every) system of parameters x_1, \ldots, x_d of R, $\omega/(x_1, \ldots, x_d)\omega$ is an injective hull for $R/(x_1, \ldots, x_d)R$.

(f) If ω is a canonical module for R, then the ring $R \oplus_R \omega$ (where the product of $r \oplus w$ and $r' \oplus w'$ is defined to be $rr' \oplus (rw' + r'w)$) is a Gorenstein local ring that maps onto R.

(g) If ω is a canonical module for R, then for every prime ideal P of R, ω_P is a canonical module for R_P.

(h) If ω is a canonical module for R, then the obvious map $R \to \text{Hom}_R(\omega, \omega)$ is an isomorphism. Moreover, $H^n_m(\omega) \cong E_R(K)$, so that $E_R(K) \cong \lim \omega/(x_1^t, \ldots, x_d^t)/\omega$, where the successive maps are induced by multiplication by $x_1 \cdots x_d$.

(i) The minimal number of generators of ω is the type of R. R is Gorenstein iff If ω is cyclic, in which case $\omega \cong R$.

Proof. Let $E = E_R(K)$ be an injective hull of K and let $_^{\vee}$ denote Hom$_R(_, E)$.
(a) We have that $\text{Hom}_R(\omega, E) \cong \text{Hom}_R(\hat{\omega}, E)$. Because the module in the first variable is finitely generated, the image of a specific homomorphism in either Hom is a finitely generated (and, hence, finite length) submodule of E, and for all t, $\omega/m^t\omega \cong \hat{\omega}/m^t\hat{\omega}$. Thus, $\omega^\vee \cong H^d_m(R)$ iff $\text{Hom}_R(\hat{\omega}, H^d_R(\hat{\omega}, E) \cong H^d_m(\hat{R}) (= H^d_m(R))$.

(b) In the complete case, the condition $\omega^\vee \cong H^d_m(R)$ (the latter has DCC) implies that $\omega \cong \omega^\vee \cong H^d_m(R)^\vee$. Thus, any canonical module is isomorphic to $H^d_m(R)^\vee$, which is a canonical module (we are using tacitly that ω has ACC). In general, given two canonical modules, their completions are isomorphic, and so the modules are isomorphic by Lemma (14.4).

(c) It suffices to do the case $k = 1$. The issues are unaffected by completion. Thus, we may assume that $R = T/I$ where T is regular. Suppose that $\dim T - \dim R = j$: this is also $\text{ht } I$. Then $\omega \cong \text{Ext}^h_T(T/I, T)$. Let x be a nonzerodivisor in R, and let $S = R/xR$, which is also Cohen-Macaulay. The unique nonvanishing $\text{Ext}^j(R, T)$ occurs for $j = h$, while the unique nonvanishing $\text{Ext}^j(S, T)$ occurs for $j = h + 1$. The long exact sequence for Ext coming from $0 \to R \xrightarrow{x} R \to S \to 0$ yields:

$$0 \to \text{Ext}^h_T(R, T) \xrightarrow{x} \text{Ext}^h_T(R, T) \to \text{Ext}^{h+1}_T(S, T) \to 0$$

and since $\omega_R \cong \text{Ext}^h_T(R, T)$ while $\omega_S \cong \text{Ext}^{h+1}_T(S, T)$, the result follows.

(d) When $d = 0$, $\omega_R \cong \text{Hom}_R(H^0_m(R), E) \cong \text{Hom}_R(R, E) \cong E$.

(e) We have already established that if ω is a canonical module for R then depth $\omega = \dim R$. Moreover, if x_1, \ldots, x_d is a system of parameters then $\omega/(x_1, \ldots, x_d)\omega$ is a canonical module for $R/(x_1, \ldots, x_d)R$, which, by part (d), is an injective hull for K over $R/(x_1, \ldots, x_d)R$.

Now suppose that M is a module of depth d and for the one system of parameters $\underline{x} = x_1, \ldots, x_d$, we have that $M/(\underline{x})M$ is an injective hull for $R(\underline{x})$. This implies that M has type 1, and so the socle in $M/(\underline{y})M$ will be one-dimensional for any system of parameters \underline{y}; thus, every $M/(\underline{y})M$ is an essential extension of K. We next want to show that if $\underline{y} = \underline{x}^t$ then $M/(\underline{x}^t)M$ has the same length as $R/(\underline{x}^t)R$. This will imply that $M/(\underline{x}^t)M$ is an injective hull for K over $R/(\underline{x}^t)$ for all t.

One way to see this is to note that $R/(\underline{x}^t)R$ has a filtration

$$R/(\underline{x}^t)R \supseteq I_1(\underline{x}^t)R \supseteq \cdots \supseteq I_j/(\underline{x}^t)R \supseteq \cdots \supseteq I_N(\underline{x}^t)R = 0$$

where $N = t^d$, each of the ideals I_j is generated by a set of monomials in the x’s, $I_0 = R$, $I_N = (\underline{x}^t)R$, and $I_j/I_{j+1} \cong R/(\underline{x}^t)$ for $0 \leq j \leq N - 1$. One can build the sequence of
ideals recursively by beginning with \(I_N = (x^t)R \), and, at the recursive step (constructing \(I_j \) from \(I_{j+1} \)) adjoining to \(I_{j+1} \) a monomial \(\mu = x_1^{a_1} \cdots x_d^{a_d} \) such that each \(x_s \mu \) is already in \(I_{j+1} \), \(1 \leq s \leq d \). Then \(I_j/I_{j+1} \cong (I_{j+1} + \mu)/I_{j+1} \cong R\mu/(I_{j+1} \cap R\mu) \cong R/(I_{j+1} : R\mu) \) (quite generally, if \(\mu \) is not a zerodivisor in \(R \), then \(J \cap R\mu = (J : R\mu)\mu \cong J : R\mu \), and it is not difficult to see that, because the \(x \)'s are a regular sequence in \(R \), \(I_{j+1} : R\mu = (x)R \). (It is clear, by construction, that \(I_{j+1} : R\mu \) contains \((x)R\). To get the other inclusion, recall that the exponent of \(x_j \) in \(\mu \) is \(a_j \). We may enlarge \(I = I_{j+1} \) so that it contains \(x_j^{a_j+1} \) for each \(j \), and once this is done the resulting ideal \(I \) is actually generated by the elements \(x_j^{a_j+1}, \; 1 \leq j \leq d \). Choose \(t \geq \max_j a_j \). Suppose that \(r\mu \in I \). Then if we multiply through by \(\prod_{j=1}^{d} x_j^{t-a_j} \), we see that \(r(x_1^{t} \cdots x_d^{t}) \in (x_1^{t+1}, \ldots, x_d^{t+1})R \), and we already know that in this case, \(r \in (x_1, \ldots, x_d)R \) when the \(x \)'s form a regular sequence.)

(We note two closely related facts. When \(x \) is an \(R \)-sequence, the associated graded ring \(\text{gr}_x R \) is a polynomial ring in \(d \) variables over \(A = R/(x) \). Also, \(A[X_1, \ldots, X_d]/(X^t) \) is a free \(A \)-module whose generators are the images of the \(t^d \) monomials in the variables \(X_j \) in which all exponents occurring are \(< t \).

One has a corresponding filtration of \(M/(x^t)M \), namely

\[
M/(x^t)M \supseteq I_1 M/(x^t)M \supseteq \cdots \supseteq I_j M/(x^t)M \supseteq \cdots \supseteq I_N M/(x^t)M = 0,
\]

and because the \(x \)'s form a regular sequence on \(M \) one can show similarly that every factor is isomorphic with \(M/(x)M \). By hypothesis, \(M/(x)M \) is an injective hull of \(K \) over \(R/(x)R \), and so \(\ell(M/(x)M) = \ell(R/(x)R) \). But then \(\ell(M/(x^t)M) = t^d \ell(M/(x)M) = t^d \ell(R/(x)R) = \ell(R/(x^t)R) \). Since \(M/(x^t)M \) is an essential extension of \(K \) over \(R/(x^t)R \) whose length is the same as the length of the injective hull of \(K \) over \(R/(x^t)R \), it must be the injective hull of \(K \) over \(R/(x^t)R \).

The question of whether \(M \) is a canonical module is unaffected by completion. Suppose that \(\omega \) is a canonical module. We then have that for every \(t \) there is an isomorphism \(M/(x^t)M \cong \omega/(x^t)\omega \). It will suffice to show that we can choose these isomorphisms \(\alpha_t \) compatibly, so that for all \(t \), \(\alpha_{t+1} \) induces \(\alpha_t \) (for then we obtain an induced isomorphism of \(M \lim_t M/(x^t)M \) with \(\omega \cong \lim_t \omega/(x^t)\omega \). We can do this recursively. Suppose that \(\alpha_t \) has been chosen. Choose an arbitrary isomorphism \(\beta : M(x^{t+1})M \cong \omega/(x^{t+1})\omega \). Then \(\beta \) induces an isomorphism of \(M/(x^t)M \cong \omega/(x^t)\omega \) when we apply \(T/(x^t) \otimes_R \) to it. Then \(\alpha_t \gamma^{-1} \) is an automorphism of \(\omega/(x^t)\omega \), which is an injective hull of \(K \) over \(R/(x^t)R \). Thus, \(\alpha_t \gamma^{-1} \) coincides with multiplication by a certain unit \(\eta \) of \(R/(x^t)R \), and
η lifts to a unit ζ of $R/(x^{t+1})R$. Let $\alpha_{t+1} = \zeta \beta$. When we look at the induced map $M/(x^t M) \to \omega/(x^t \omega)$ we get $\eta \gamma = \alpha_t \gamma^{-1} \gamma = \alpha_t$, as required.

(f) It is easy to check that $S = R \oplus \omega$ is a commutative associative R-algebra in which ω is an ideal whose square is zero. Evidently, S is local and module-finite over R. Any system of parameters in R is a regular sequence on both R and on ω. Thus, S is Cohen-Macaulay, and if one kills a maximal regular sequence in R, one reduces to proving that the quotient has type 1. The quotient has the form $R \oplus E$, where R is an Artin local ring and E is the injective hull of its residue field. Suppose that $r \oplus e$ kills the maximal ideal $m \oplus E$ of S. Then $r \oplus E$ kills E, which implies that r kills E. Since E is faithful, r must be zero. Thus, we must have $0 \oplus e$, where e kills $m \oplus E$. But this simply means that e kills m. Thus, the socle of S is $0 \oplus \text{Soc } E$, which shows that is a one-dimensional K-vector space, as required.

Finally, note that $S/\omega \cong R$.

(g) By part (f), there is no loss of generality in assuming that $R \cong S/I$, where S is a local Gorenstein ring. Then $\omega \cong \text{Ext}^h_S(R, S)$, where h is the height of I. The result now follows from the fact that, for any prime ideal $P = Q/I$ of R, where Q is a prime ideal of S containing I, the height of I does not change when we localize at Q (R is Cohen-Macaulay), and localization at Q commutes with the calculation of Ext.

(h) The issue of whether $R \to \text{Hom}_R(\omega, \omega)$ is an isomorphism is unaffected by completion. Thus, we assume that R is complete. Any endomorphism of ω induces an endomorphism of $\omega_t = \omega/(x^t)\omega$ for all t by applying $R/(x^t)R \otimes_R -$ and, conversely, given a family of endomorphisms β_t of ω_t for each t, which are compatible (so that β_{t+1} induces β_t for each t), they induce an endomorphism of $\lim_t \omega_t \cong \omega$ which gives rise to all of them. Thus, $\text{Hom}_R(\omega, \omega) = \lim_t \text{Hom}_R(\omega_t, \omega_t)$. Here, it does not matter whether we take R-endomorphisms of ω_t or $(R/(x^t)R)$-endomorphisms. Now, ω_t is an injective hull for K over $R/(x^t)R$ for each t, and so its endomorphisms may be identified with $R/(x^t)R$ by the obvious map. This identifies $\text{Hom}_R(\omega, \omega)$ with $\lim_t R/(x^t)R \cong R$, as required.

But then local duality over R yields $H^n_m(\omega) \cong \text{Ext}^n_R(\omega, \omega) = \text{Hom}_R(\omega, \omega) \cong R^\vee = E$.

(i) For the first statement we may complete, and so assume that R is a homomorphic image of a regular ring T. Then ω is the Ext dual of R over T, and so the minimal number of generators of ω is the type of R by a Math 615 problem. EXPAND ON THIS. It is then clear that R is Gorenstein iff ω is cyclic. But if R is Gorenstein we know that $\omega \cong R$. □

(14.6) Exercises. Let (R, m, K) be a Cohen-Macaulay ring of Krull dimension d with canonical module $\omega = \omega_R$.
(a) Show that \(\text{id}_R \omega = d \), and that the \(i \)th module in a minimal injective resolution of \(\omega \) is the direct sum over all prime ideals \(P \) of height \(i \) of the modules \(E(R/P) \) (one copy of each).

(b) Show that if \(M \) is a finitely generated module of finite projective dimension over \(R \), then \(\text{Tor}_i^R(M, \omega) = 0 \) for \(i \geq 1 \). (This only depends on the fact that \(\omega \) is a faithful Cohen-Macaulay module over \(R \), so that for every ideal \(I \) of \(R \), \(\text{depth}_I \omega = \text{depth}_I R = \text{ht} I \). Apply the Buesbaum-Eisenbud criterion. EXPAND)

(c) Prove that if \(M \) is a finitely generated \(R \)-module of finite projective dimension, then \(M \otimes_R \omega \) is a finitely generated \(R \)-module of finite injective dimension.

(d) Prove that if \(M \) is a finitely generated module of finite injective dimension then \(\text{Ext}_R^i(\omega, M) = 0 \) for \(i \geq 1 \). (Again, this only depends on the fact that \(\omega \) is a faithful Cohen-Macaulay module.)

(e) (R.Y. Sharp: see [Sh]) Prove that the category of finitely generated \(R \)-modules of finite projective dimension is equivalent to the category of finitely generated \(R \)-modules of finite injective dimension (the map in one direction is given by \(_ \otimes_R \omega \), and in the other direction by \(\text{Hom}_R(\omega, _ _ _) \). (If \(R \) is Gorenstein, \(\omega = R \) and the two categories coincide.)

(14.7) Exercises. Let \((R, m, K)\) be any local ring.

(a) Prove that if \(M \) is any \(R \)-module of finite injective dimension, and \(x \) is not a zero divisor on \(M \), then \(M/xM \) has finite injective dimension. Conclude the same for \(M(x)M \), where \(x = x_1, \ldots, x_k \) is a regular sequence on \(M \).

(b) Show that if \(R \) is Cohen-Macaulay and \(\underline{x} \) is a system of parameters, then the finite length module \(E \) which is the injective hull of \(K \) over \(R/(\underline{x})R \) has finite injective dimension over \(R \). (Reduce to the case where \(R \) is complete, and so has a canonical module \(\omega \). Then \(E \cong \omega/(\underline{x})\omega \).) Conclude that every Cohen-Macaulay local ring possesses a finitely generated nonzero module of finite injective dimension.

(14.8) Remark. Bass asked whether a local ring which possesses a finitely generated nonzero module \(M \) of finite injective dimension must be Cohen-Macaulay. See his paper [B]. Peskine and Szpiro answered this affirmatively in [PS] in characteristic \(p \) and in many other cases in characteristic 0. The result can be deduced from the intersection theorem discussed by Peskine and Szpiro in [PS], and from this it can be deduced that it follows in the equicharacteristic case from the existence of big Cohen-Macaulay modules. Paul Roberts proved the intersection theorem in mixed characteristic in [Ro?], and so the
question of Bass has been answered affirmatively in all cases. Thus, a local ring is Cohen-Macaulay iff it possesses a nonzero finitely generated module of finite injective dimension. Roberts’ work depends on a theory of Chern classes developed by Fulton, Macpherson and Baum. See [Ful], [Ro book], [Ro MSRI exposition]

Theorem. Let \((R, m, K)\) be a Cohen-Macaulay local ring with canonical module \(\omega\).

(a) If \(R\) is a domain, or if \(R\) is reduced, or, much more generally, if the localization of \(R\) at every minimal prime is Gorenstein (in this case we say that \(R\) is generically Gorenstein) then \(\omega\) is isomorphic with an ideal of \(R\) that contains a nonzerodivisor.

(b) If \(\omega \cong I \subset R\), then every associated prime of \(I\) has height one. More generally, if \(R\) is any ring that is \(S^2\) and \(I\) is an ideal of \(R\) containing a nonzerodivisor such that \(I\) is \(S^2\) as an \(R\)-module, then every associated prime of \(I\) has height one.

Proof. (a) Let \(S\) be the multiplicative system of \(R\) consisting of all nonzero divisors. Since \(R\) is Cohen-Macaulay, \(S\) is simply the complement of the union of the minimal primes of \(R\). We shall show that iff \(R\) is generically Gorenstein then \(S^{-1}\omega \cong S^{-1}R\). The restriction of the isomorphism to \(\omega\) then yields an injection \(\eta: \omega \to S^{-1}R\) (note that the elements of \(S\) are also nonzerodivisors on \(\omega\)). The images of a finite set of generators of \(\omega\) can be written \(r_i/s_i\), \(1 \leq i \leq h\), and the if \(s = s_1 \cdots s_n\), we have that \(s\eta: \omega \to R\) is an injection.

Since \(S^{-1}R\) is zero-dimensional, it is isomorphic with \(\Pi P R_P\) as \(P\) runs through the minimal primes of \(R\), and \(S^{-1}\omega \cong \Pi P \omega_P\). Thus, it suffices to show that \(\omega_P \cong R_P\) when \(P\) is minimal. But \(\omega_P\) is a canonical module for \(R_P\), and \(R_P\) is Gorenstein.

Of course, when \(R\) is a domain or reduced, the localization at any minimal prime is a field, and so reduced rings are generally Gorenstein.

Note that the issue of whether \(I\) contains nonzero divisor is unaffected by localization at \(S\). The argument just given implies that \(S^{-1}I \cong S^{-1}\omega \cong S^{-1}R\) is free, and an element of \(I\) which generates must correspond to a nonzerodivisor.

(b) Suppose that \(Q\) is an associated prime of \(I\) of height two or more. Then we replace \(R, I\) by \(R_Q\, I R_Q\). Thus we may assume that \((R, m, K)\) is local, that depth \(R \geq 2\), and that the maximal ideal of \(R\) is associated to \(I\). Then depth \(R/I = 0\), and since depth \(R = \dim R \geq 2\), we must have depth \(m I = 1\). But depth \(m I \geq 2\), because, since \(I\) contains a nonzerodivisor, it has a submodule isomorphic with \(R\), and this means that \(\dim I\) (as an \(R\)-module is at least two. This is a contradiction. \(\square\)

(14.10) **Definition and discussion.** Let \(R\) be a normal Noetherian domain. If \(a \neq 0\) in
R, then the primary decomposition of aR has the form $P_1^{(n_1)} \cap \cdots \cap P_k^{(n_k)}$, where P_i are height one primes and n_i is the order of a as an element of the DVR R_{P_i}. We may form the free abelian group whose generators are the height one primes of R. The element $\Sigma_i n_iP_i$ is called the divisor of a in that group. If we kill subgroup generated by all the divisors of nonzero elements of R in the free abelian groups generated by the height one primes, then we obtain what is called the divisor class group of R. (This coincides with the notion that one has for Dedekind domains, which number theorists have studied intensely for rings of integers in finite algebraic extensions of the rationals.) It is sometimes denoted $\text{Cl } R$.

Every element of $\text{Cl } R$ can be represented by an ideal of pure height one (i.e., a nonzero ideal whose primary decomposition involves only height one primes). Note that the only primary ideals for a height one prime in a normal ring are its symbolic powers. Thus, we let the ideal $P_1^{(n_1)} \cap \cdots \cap P_k^{(n_k)}$, correspond to $\Sigma_i n_iP_i$. If some n_i is negative, we may always add the divisor of some element $a \in R - \{0\}$ to obtain an equivalent element in which all n_i are nonnegative.

It turns out that any ideal of pure height one in a normal domain is a (torsion-free) reflexive module of rank one. In fact, there is a bijective correspondence between elements of $\text{Cl } R$ and the isomorphism classes of rank one reflexive modules: each rank one reflexive is isomorphic to a nonzero ideal, which must be of pure height one (because both it and the ring are S_2). It turns out that the ideals I, J are isomorphic as modules if and only if there are elements $a, b \in R - \{0\}$ such that $bI = aJ$, and this is the class if and only if $\text{Cl } R$ corresponds to tensoring the reflexive modules and taking the double dual (or multiplying the representative ideals I, J and then taking the intersection of the primary components of IJ that correspond to height one primes). The inverse of I corresponds to $\text{Hom}_R(I, R)$. The elements $\text{Cl } R$ are called divisor classes. It is worth noting that R is a UFD iff $\text{Cl } R = 0$.

The point we want to make here is that ω is a rank one reflexive module when R is normal Cohen-Macaulay, and so represents a divisor class.

Theorem (Murthy). Let R be a Cohen-Macaulay ring which is a homomorphic image of a Gorenstein ring and suppose that the local rings of R are UFD’s. Then R is Gorenstein.

Proof. We may assume that R is local. The hypothesis implies that R has a canonical module ω. Since R is a UFD, the ideal corresponding to ω must be principal. Thus, ω is cyclic, which implies that $\omega \cong R$ and so R is Gorenstein. \[\square\]
There is an example of a two-dimensional local UFD (⇒ normal and, hence, Cohen-
Macaulay in dimension 2) that is not Gorenstein. This ring is consequently not a homo-
morphic image of a Gorenstein ring.

(14.12) Example. Let S be a subsemigroup of \mathbb{N}, i.e., a subset containing 0 and closed
under addition. Assume that the greatest common divisor of the elements of S is 1.
E.g., we might have $S = \{0, 2, 3, 4, 5, \ldots \}$ (2 and 3 generate) or we might have that
$S = \{0, 7, 9, 10, 11, 12, 13, \ldots \}$. Let K be a field and let $K[[t^S]]$ denote the subring
of $K[[t]]$ consisting of all power series in which the exponents occurring are in S. For
any choice of S as above, $K[[t^S]]$ is one-dimensional integral domain, and there Cohen-
Macaulay. The integral closure of any of these rings is $K[[t]]$. There is always a largest
element $a \in \mathbb{N}$ such that $a \notin S$. A corollary of one of the results of Gorenstein’s thesis (he
was a student of Zariski before he converted to group theory) asserst that $K[[t^S]]$ is
Gorenstein (Bass coined the term later) if and only if the number of elements in $\mathbb{N} - S$ is
equation to the number of elements in S that are $< a$. In the first example, $a = 1$, and since
$\{0\}, \{1\}$ have the same cardinality the ring is Gorenstein. In the second example, $a = 8$, and since $\{0, 7\}, \{1, 2, 3, 4, 5, 6, 8\}$ have different cardinalities, the ring is not Gorenstein.

(Consider a complete local domain of dimension one, R, and let A be the integral closure
of R, which is a DVR. Then $J = \{r \in R : rA \subseteq R\}$ is the largest ideal of R which is also
an ideal of A and is called the conductor of A in R. Since J is a nonzero ideal of A, $J \cong A$
as an A-module. Consider the exact sequence $0 \to J \to R \to R/J \to 0$. If R is Gorenstein
and we apply $\text{Hom}_R(_, R)$ we obtain

$$0 \to 0 \to \text{Hom}_R(R, R) \to \text{Hom}_R(J, R) \to \text{Ext}^1_R(R/J, R) \to 0.$$

$J \cong A$ and $\text{Hom}_R(A, R)$ is a canonical module for A and therefore is $\cong A$. The Ext^1
terms is dual to $H^0_m(R/J) \cong R/J$. But the sequence can be identified with

$$0 \to 0 \to R \to A \to A/R \to 0$$

which shows that A/R is the Matlis dual of R/J, and so the two have the same length.
Applying this with $R = K[[t^S]], A = K[[t]],$ and $J = t^{a+1}A$ gives half the result (assuming
that R is Gorenstein).

The rest of the proof is left as an excercise.
15. GLOBAL CANONICAL MODULES

(15.1) Definition and discussion. Let R be a Cohen-Macaulay ring that is not necessary local. We may then define a canonical module for R to be any finitely generated module ω such that ω_P is a canonical module for R_P for every prime ideal P of R. Of course, it suffices if the condition holds when P is maximal. If R is Gorenstein, then R itself is a canonical module, but, in general, there are many others: any module locally free of rank one (i.e., any rank one projective) will also be a canonical module. More generally, if ω is a canonical module and N is a rank one projective, then $\omega \otimes_R N$ is, evidently, also a canonical module. Pleasantly, this is the only kind of nonuniqueness that one can have, as the next result will establish.

(15.2) Theorem. Let R be a Cohen-Macaulay ring.

(a) R has a canonical module if and only if R is a homomorphic image of a Gorenstein ring.

(b) If ω, ω' are two canonical modules for R, then $\text{Hom}_R(\omega, \omega')$ is a rank one projective over R, and the natural map $\omega \otimes_R \text{Hom}_R(\omega, \omega') \to \omega'$ sending $w \otimes f$ to $f(w)$ is an isomorphism.

Proof. (a) If R has a canonical module ω, then $R \bigoplus \omega$ (where multiplication is given by $(r \oplus w)(r' \oplus w') = rr' \oplus (rw' + r'w)$) is Gorenstein: since ω is nilpotent, the primes correspond bijectively with primes P of R (P corresponds to $P \bigoplus \omega$), and the localization of $R \bigoplus \omega$ at $P \bigoplus \omega$ at $P \bigoplus \omega$ is the same as its localization at P, i.e, $R_P \bigoplus \omega_P$ since this ring is already local. (Our discussion of the local case shows that $R_P \bigoplus \omega_P$ is Gorenstein.)

To establish the converse, first note that we may assume that Spec R is connected: if not R is a finite product of rings with connected Spec, each of which is a homomorphic image of R and, hence, a homomorphic image of a Gorenstein ring, and if we have a canonical module for each of these, then the product is a canonical module for the product ring.

Now suppose that $R = S/J$ where Spec R is connected and S is Gorenstein. We claim that all minimal primes of J have the same height. This is clear if the two minimal primes are both contained in the same maximal ideal m of S: we can localize at m without affecting any relevant issues, and then, since R is Cohen-Macaulay local, the quotient by any minimal prime has the same dimension as R, while since S is Cohen-Macaulay local,
it follows that the two primes have the same height. The result now follows from the observation that for a Noetherian ring R, $\text{Spec } R$ is connected if and for any two minimal primes P, P' there is a sequence of ideals $P = P_0, m_1, P_1, m_2, \ldots P_{k-1}, m_k, P_h = P'$ such that all the P’s are minimal primes, all the m_i are maximal ideals, and each m_j contains both P_{j-1} and P_j, $1 \leq j \leq k$. We leave this statement as an exercise.

Let h be the common height of all minimal primes of J, which, of course, is the height of J. Then JS_Q has height h for every prime $Q \supseteq J$. It follows from the local case that $\text{Ext}^h_S(S/J, S)$ is a canonical module for $R = S/J$.

(b) Both statements reduce at once to the case where R is local. But then $\omega \cong \omega'$ and $R \to \text{Hom}_R(\omega, \omega) \cong \text{Hom}_R(\omega, \omega')$ is an isomorphism, and the verification is trivial. □

The canonical module is a “first nonvanishing Ext.” Such Ext’s have a kind of uniqueness which can be establishing using local cohomology theory.

(15.3) Theorem. Let $R \to S$ be a homomorphism of Noetherian rings, let N be a finitely generated R-module and let M be a finitely generated S-module. Then if $I = \text{Ann}_R N, \text{Ext}^i_R(N, M)$ and $\text{Ext}^i_S(S \otimes_R N, M)$ vanish for $i < d = \text{depth}_1 M = \text{depth}_{1S} M$ (the annihilator of $S \otimes_R N$ is the same as IS up to radicals), and if d is finite then $\text{Ext}^d_R(N, M) \cong \text{Ext}^d_S(S \otimes_R N, M)$ as S-modules (and are not zero).

We shall prove this using:

(15.4) Theorem. Let R, S, N, and M be as in (15.3), let I be any ideal of R that has a power which kills N, and suppose that $d \leq \text{depth}_1 M$. Then

$$\text{Ext}^d_R(N, M) \cong \text{Hom}_R(N, H^d_I(M))$$

as S-modules.

Proof that (15.4) implies (15.3). We have the isomorphism of (15.4). But we may also apply the result to the case where $R = S$ and N is replaced by $S \otimes_R N$ to obtain

$$\text{Ext}^d_S(S \otimes_R N, M) \cong \text{Hom}_S(S \otimes_R N, H^d_J(M))$$

where $J = \text{Ann}_S(S \otimes_R N)$. Since J has the same radical as IS we have $H^d_J(M) \cong H^d_I(M)$. Thus

$$\text{Ext}^d_S(S \otimes_R N, M) \cong \text{Hom}_S(S \otimes_R N, H^d_J(M)).$$
But by the universal property of extension of scalars, for any S-module W we have that $\text{Hom}_S(S \otimes_R N, W) \cong \text{Hom}_R(N, W)$. Thus, $\text{Ext}^d_S(S \otimes_R N, M) \cong \text{Hom}_R(N, H^d_I(M)) \cong \text{Ext}^d_R(N, M)$ (by the more transparent initial application of Theorem 15.4). \qed

Proof of (15.4). Let N be any R-module that is killed by I^t. Then there is a map

$$N \otimes_R \text{Ext}^d_R(N, M) \rightarrow \text{Ext}^d_R(R/I^t, M)$$

obtained as follows: given $v \in N$ and $\theta \in \text{Ext}^d_R(N, M)$ we have a map $R/I^t \rightarrow N$ sending r to rv, and this induces a map $\lambda_v : \text{Ext}^d_R(N, M) \rightarrow \text{Ext}^d_R(R/I^t, M)$. We send $v \otimes \theta$ to $\lambda_v(\theta)$. By the adjointness of \otimes and Hom this yields a map

$$\text{Ext}^d_R(N, M) \rightarrow \text{Hom}_R(N, \text{Ext}^d_R(I^t, N)).$$

We claim that this map is an isomorphism. Given N we can take a presentation over R/I^t, say $G \rightarrow F \rightarrow N \rightarrow 0$, where each of G, F is a finite direct sum of copies of R/I^t. Both sides are left exact functors of the variable N (so long as N is killed by a power of I): the lower Ext’s vanish. If we abbreviate $\mathcal{E}(W) = \text{Hom}_R(N, \text{Ext}^d(R/I^t, M))$ then we have a commutative diagram:

$$
\begin{array}{cccccc}
0 & \longrightarrow & \text{Ext}^d_R(N, M) & \longrightarrow & \text{Ext}^d_R(F, M) & \longrightarrow & \text{Ext}^d_R(G, M) \\
\downarrow & & \downarrow & & \downarrow & \downarrow \\
0 & \longrightarrow & \mathcal{E}(M) & \longrightarrow & \mathcal{E}(F) & \longrightarrow & \mathcal{E}(G)
\end{array}
$$

The fact that we have an isomorphism now follows from the five lemma (or from the fact that isomorphic maps have isomorphic kernels) once we have shown that F, G yield isomorphisms. This comes down to the case where N is R/I^t, which is obvious.

If we increase t to t' we also get a map

$$\text{Ext}^d_R(N, M) \rightarrow \text{Hom}_R(N, \text{Ext}^d(R/I^{t'}, M)).$$

Now $H^d_I(M) \cong \lim_{\longrightarrow} \text{Ext}^d_R(R/I^t, M)$ and so we have a map

$$\text{Ext}^d_R(N, M) \rightarrow \text{Hom}_R(N, H^d_I(M))$$

obtained by composing $(*)_t$ with the induced map

$$\text{Hom}_R(N, \text{Ext}^d_R(R/I^t, M)) \rightarrow \text{Hom}_R(N, H^d_I(M)).$$
Since N is finitely presented, Hom commutes with direct limits in the second variable, and since (\ast_t) is an isomorphism for all sufficiently large t, it follows that the induced map $\text{Ext}^d_R(N, M) \to \text{Hom}_R(N, H^d_I(M))$ is an isomorphism as well. □

Our next objective is to connect the global theory of canonical modules with differentials.

16. CANONICAL MODULUS AND DIFFERENTIAL FORMS

(16.1) Discussion. In the case of Cohen-Macaulay algebras R finitely generated over a field K, one can define a global canonical module that is unique up to isomorphism: one does not need to worry about tensoring with some rank one projective. Since the case where the ring is a product can be handled by dealing with each component ring separately, we shall assume that $\text{Spec } R$ is connected.

Then we may map a polynomial ring S over K onto R. Suppose that $R \cong S/I$, and that $\alpha : S \to R$ is the quotient surjection. Then all minimal primes of I have the same height, say h, and we may take $\omega_\alpha \cong \text{Ext}^h_S(S/I, S)$.

Suppose that one choose a different polynomial ring T and maps it onto R, say $R = T/J$ where height $J = k$, and let β be the quotient surjection $T \to R$. We want to see that $\text{Ext}^k_T(T/J, T) \cong \text{Ext}^h_S(S/I, S)$, i.e. that $\omega_\alpha \cong \omega_\beta$. First note that there is also a map $\gamma : S \otimes_K T \to R$ that sends $s \otimes t$ to $\alpha(s)\beta(t)$. It will suffice to show that $\omega_\alpha \cong \omega_\gamma$ since, by symmetry, we then also have that $\omega_\beta \cong \omega_\gamma$. Suppose that the indeterminates z_1, \ldots, z_n generating T over K map to r_1, \ldots, r_n in R. We can choose s_1, \ldots, s_n in S mapping to r_1, \ldots, r_n in R, and there is then a surjection of S-algebras $\delta : S \otimes T \to S$ that sends each z_i to s_i. Then $\alpha \circ \delta = \gamma$. Thus, we may think of γ as arising as the composition of a surjection from the polynomial ring $V = S \otimes_K T$ to S with a surjection from S to R. Now, $V \cong S[z_1, \ldots, z_n]$. By a change of indeterminates sending z_i to $z_i - s_i$, we reduce to the case where the map $V \to S$ simply kills the z_i. The kernel of $V \to R$ is then $I + (z_i)$, and the isomorphism we want is that

$$\text{Ext}^h_S(S/I, S) \cong \text{Ext}^{h+n}_V(V/(I + (z_i)), V).$$

Now, when z_1, \ldots, z_n is an R-sequence on M in the annihilator of N we have that

$$\text{Ext}^{h+n}_V(N, M) \cong \text{Ext}^h_V(N, M/(z_i)M).$$
Applying this to the second module just above, we have that $\text{Ext}_V^{h+n}(R,V) \cong \text{Ext}_V^h(R,S)$, which in turn is isomorphic with $\text{Ext}_S^h(R,S)$, since the calculation of the first nonvanishing Ext is independent of which ring we work over.

Thus, in dealing with Cohen-Macaulay rings R finitely generated over K, we always let ω_R be ω_α for some α, and the resulting canonical module is unique up to isomorphism.

Recall that a finitely generated algebra R over a field K is geometrically regular or smooth over K if and only if for every field $L \supseteq K$, $L \otimes_K R$ is regular. It suffices if this holds for every finite purely inseparable field extension L of K, or if it holds when L is the smallest perfect field containing K, or if it holds for any larger field that than, e.g., for the algebraic closure of K. Thus, if K has characteristic 0 or if K is perfect, or if K is algebraically closed, then R is smooth over the field K iff R is regular.

Now suppose that R is a smooth K-algebra, with Spec R connected (which, in the regular case, simply means that R is a comain). Then R is Gorenstein, and so ω_R is locally free of rank one, i.e., it is a rank one projective. It is not true, in general, that ω_R is free. The result below explains why global canonical modules are connected with differentials. If R is an A-algebra, we write $\Omega_{R/A}$ for the universal module of Kähler differentials of R over A (thus, there is a universal A-derivation $d: R \to \Omega_{R/A}$ and for every R-module M, $\text{Hom}_R(\Omega_{R/A}, M) \cong \text{Der}_A(R, M)$ via the map that sends R to $T \circ d$). We write $\Omega_{R/A}^i$ for the ith exterior power $\wedge^i \Omega_{R/A}$. When R is smooth over A, the module $\Omega_{R/A}$ is locally free over R, and hence so are its exterior powers. In particular, when R is a geometrically regular domain that is finitely generated over a field K and has dimension d, then $\Omega_{R/K}$ is locally free of rank d, which implies that $\Omega_{R/K}^d$ is locally free of rank one.

(16.2) Theorem. If R is a finitely generated K-algebra that is a K-smooth domain of dimension d, then $\Omega_{R/K}^d \cong \omega_R$ (calculated using a surjection of a polynomial ring onto R).

We defer the proof for a moment. This result suggests that for a smooth K algebra R of dimension d which is a domain, one should think of ω_R as $\Omega_{R/K}^d$. This gives a completely choice free notion of what the canonical module is which will have some functorial properties. If $R = K[x_1, \ldots, x_d]$, then $\Omega_{R/K}^d$ is isomorphic to R: it is the free module on the generator $dx_1 \wedge \cdots \wedge dx_d$. However, this generator is not canonical. Thus, thinking of ω_R as $\Omega_{R/K}^d$ is different from thinking of it as R: R has the canonical generator 1, while viewing R as a polynomial ring in different variables will produce a different generator for $\Omega_{R/K}^d$. In other words, there is no canonical identification of $\Omega_{R/K}^d$ with R. We now establish (16.2) by proving a stronger result:
(16.3) Theorem. Let S, R be domains finitely generated and smooth over K, and suppose that $S \to R$ is surjective. Let $n = \dim S$ and $d = \dim R$. Then $\text{Ext}^{n-d}_S(R, \Omega^n_{S/K}) \cong \Omega^d_{R/K}$ canonically, and this isomorphism commutes with localization at elements of S.

Remarks. If we apply this with S a polynomial ring mapping onto R, then we obtain (16.2), since $\Omega^n_{S/K} \cong S$. Note that $n - d$ will be the height h of the kernel ideal.

The fact that one has this canonical isomorphism locally immediately globalizes. Given any scheme X over K there is a quasicoherent sheaf $\Omega_{X/K}$ whose sections on any open affine $\text{Spec} S$ coincide with $\Omega_{S/K}$ (the point is that this construction commutes with localization). When X is of finite type this sheaf is coherent. When X is smooth it is locally free. We may similarly define $\Omega^i_{X/K}$ for $i \geq 0$.

Now suppose that X is a smooth scheme of finite type over K all of whose components have dimension n (corresponding to $\text{Spec} S$) and let Z be a smooth closed subscheme all of whose components have dimension d (corresponding locally to $\text{Spec} R$, where there is a surjection from S to R). The canonical isomorphisms on open affines provided by Theorem (16.3) which commute with localization obviously patch together to give a canonical global isomorphism

$$\text{Ext}^{n-d}_{\mathcal{O}_X}(\mathcal{O}_Z, \Omega^n_{X/K}) \cong \Omega^d_{Z/K}.$$

Here, Ext denotes sheaf Ext: when (X, \mathcal{O}_X) is a Noetherian scheme \mathcal{F} is coherent, and \mathcal{G} is quasicoherent, $\text{Ext}^i_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is a sheaf whose sections on the open set U may be identified with $\text{Ext}^i_{\mathcal{O}_X(U)}(\mathcal{F}(U), \mathcal{G}(U))$.

The scheme-theoretic discussion is not a luxury here. In order to prove the purely affine statement (16.3) we need to think scheme-theoretically. We shall construct the canonical isomorphism on a sufficiently small affine neighborhood of each point. These will then patch to give the global fact we want.

We first need two preliminary results.

(16.4) Lemma. Let $0 \to H \xrightarrow{\alpha} G \xrightarrow{\beta} F \to 0$ be a short exact sequence of free modules over the ring R, where H, G, F have finite ranks h, n, d respectively (so that $n = h + d$). Let γ be any splitting for β. Then the map $$(\Lambda^h \alpha) \wedge (\Lambda^d \gamma) : \Lambda^h H \otimes \Lambda^d F \to \Lambda^n G$$ is an isomorphism. This isomorphism is independent of the choice of the splitting γ, and is compatible with localization of R (and every other base change).

Proof. $G = \alpha(H) \oplus \gamma(F)$ and we have the standard identification of $\Lambda^n G$ with the direct sum of all the terms $\Lambda^i \alpha(H) \otimes \Lambda^j \gamma(F)$, all of which are zero unless $i = h$, $j = d$. This
Proof. Choose a set of generators \(f_1, \ldots, f_r \) for \(I \). We construct an isomorphism using these generators. We then check that it is actually independent of the choice of generators. The first key point is that the fact that \(I \) is generated by a regular sequence of length \(h \) implies that the Koszul complex \(K_\bullet(\mathbf{f}; S) \) is a free resolution of \(R \) over \(S \). Let \(d(\mathbf{f})_h \) be the last non-zero map \(S \to S^h \) in the Koszul complex. Then \(\text{Ext}_S^h(S/\text{Im}N) \cong \text{Coker Hom}(d(\mathbf{f})_h, M) \cong (\text{Coker } d(\mathbf{f})_h) \otimes M \cong S/I \otimes M = R \otimes M \). Call this isomorphism \(\theta_f \). If we use the generator \(F = \overline{f}_1 \wedge \cdots \wedge \overline{f}_h \) for \(\wedge^h(I/I^2) \) (here \(\overline{f}_j \) denotes the class of \(f \in I \) in \(I/I^2 \); \(I/I^2 \) has the \(\overline{f}_j \) as an \(R \)-free basis), we get an isomorphism \(\text{Hom}_R(\wedge^h(I/I^2), R \otimes M) \) with \(\text{Hom}_R(R, R \otimes M) \) and, hence, with \(R \otimes M \): this map \(\lambda_F \), takes \(\phi \) to \(\phi(F) \). We claim that the map \(\lambda_F^{-1} \theta_f \text{Ext}_S^h(S/I, M) \text{Hom}_R(\wedge^h(I/I^2), M) \) is actually independent of the choice of \(r \) generators for \(I \). To see this, suppose that \(\mathbf{g} = g_1, \ldots, g_h \) is some other set of generators. If \([\mathbf{f}],[\mathbf{g}]\) denote the \(h \times 1 \) column vectors whose entries are the \(f_i \) and \(g_i \), respectively, then there is an \(h \times h \) matrix \(A = [a_{ij}] \) such that \(A[\mathbf{f}] = [\mathbf{g}] \). Then \(A: K_1(\mathbf{f}; S) \to K_1(\mathbf{g}; S) \) (both \(K_1 \)'s are simply \(S^h \)) gives a commutative diagram:

\[
\begin{array}{ccc}
K_1(\mathbf{f}; S) & \longrightarrow & K_0(\mathbf{f}; S) \\
A \uparrow & & \uparrow \text{id} \\
K_1(\mathbf{g}; S) & \longrightarrow & K_0(\mathbf{g}; S)
\end{array}
\]
Note that \([f], [g]\) respectively give the matrices of the maps \(K_1 \to K_0\) in the respective Koszul complexes and that both \(K_0\)'s are simply \(S\). Also note \(\text{id} = \text{id}_S\) is \(\Lambda^0 A\) and that \(A = \Lambda^1 = A\). It is then easy to check that one gets a map of complexes if one uses \(\Lambda^i A\) as the map \(K_i(g; R) \to K_i(f; R)\) for every value of \(i\). The map at the \(h\)th spot from \(S\) to \(S\) may therefore be identified with multiplication by \(\det A\). Recalling that the arrows are reversed when we apply \(\text{Hom}_R(_ , M)\), we find that \(\theta_g = (\det A) \theta_f\). Note that the image \(\delta = \det A\) of \(\det A\) in \(R\) must be a unit (although \(\det A\) need not be a unit of \(S\)). We can write \(\theta_g = \delta \theta_f\).

The image of \(A\) mod \(I\) evidently gives a map from \(I/I^2\) to itself carrying the generators \(f_i\) to the generators \(g_i\): it follows that \(G = (\det A) F = \delta F\), where \(G = g_1 \wedge \cdots \wedge g_h\). It is then immediate that \(\lambda_g = \delta \lambda_f\). Thus,

\[
(\lambda_g)^{-1} \theta_g = (\delta \lambda_f)^{-1} (\delta \theta_f) = \delta^{-1} \delta (\lambda_f^{-1} \theta_f) = \lambda_f^{-1} \theta_f
\]

as claimed. (The statement about base change is an easy exercise.) \(\square\)

Proof of (16.3). Fix \(P\) in \(\text{Spec } R\) and let \(Q\) be its inverse image in \(S\). We shall construct the isomorphism on a sufficiently small Zariski neighborhood of \(P\). Since \(S_Q\) maps onto \(R_P\) and both are regular, the kernel is generated by a regular sequence (part of a minimal set of generators for \(Q S_Q\)) in \(S_Q\). Choose \(f_1, \ldots , f_h \in S\) whose images in \(S_Q\) are a regular sequence generating the kernel: we shall construct the map using these \(f\)'s, but we shall eventually show that it is independent of the choice of the \(f\)'s. After localizing at a single element \(g \in S - Q\), we can assume that the \(f\)'s form a regular sequence generating the kernel of the map \(S_g \to R_g\). We also assume that we have localized so much that \(\Omega_S\) is free of rank \(n\) over \(S\) and that \(\Omega_R\) is free of rank \(d\) over \(R\) We shall construct the isomorphism for the corresponding affines. For simplicity we change notation and omit the subscript \(g\). Then we have that \(R = S/I\), where \(I = (f_1, \ldots , f_h) S\).

Quite generally, given a surjection \(S \twoheadrightarrow R\), there is a surjection \(\Omega_S \twoheadrightarrow \Omega_R\) (we omit \(K\) from the subscripts) and, hence, \(R \otimes_S \Omega_S \to \Omega_R\) whose kernel is generated by the images of the elements \(du\) for \(u \in I\), where \(I = \text{Ker } (S \twoheadrightarrow R)\). The map from \(I \to R \otimes_S \Omega_S\) sending \(u\) to \(du\) is \(S\)-linear \((d(su) = sdu + u ds)\), and the image of \(uds\) is \(0\) in \(R \otimes_S \Omega_S\) and kills \(I^2\). Thus, we have an exact sequence of \(R\)-modules:

\[
(*) \quad I/I^2 \to R \otimes_S \Omega_S \to \Omega_R \to 0.
\]

From the fact that \(I\) is generated by a regular sequence of length \(h\), it is easy to prove that \(I/I^2\) is \(R\)-free of rank \(h\). If we tensor with the fraction field of \(R\) it is clear that the
sequence becomes exact: since I/I^2 has rank h, the corresponding vector space, after we tensor, has the same dimension as the kernel at the middle spot, and maps onto it. But this implies that the first map is injective, since I/I^2 is torsion-free over R. Thus, the sequence (*) is an exact sequence of free modules. By Lemma (16.4) above, we have an induced isomorphism $\bigwedge^h(I/I^2) \otimes_R \bigwedge^d \Omega_R \cong \bigwedge^n(R \otimes_S \Omega_S) \cong R \otimes_S \Omega^d_S$. If N is finitely presented and locally free of rank one and M is any module we have a canonical isomorphism $M \cong \text{Hom}_R(N, N \otimes_R M)$ that sends m to the map that sends v to $v \otimes m$ (to check that the map is an isomorphism we may localize, and then we have reduced to the case where $N = R$). Thus

$$\Omega^d_R \cong \text{Hom}_R(\bigwedge^h(I/I^2), \bigwedge^h(I/I^2) \otimes_R \Omega^d_R) \cong \text{Hom}_R(\bigwedge^h(I/I^2), R \otimes_S \Omega^d_S).$$

Notice that in setting up this isomorphism, while we had to pass a small Zariski neighborhood of P, we made no other choices, and the isomorphism is compatible with further localization. The result now follows from Lemma (16.5). □

Cf./ [AK], Chapter I.

(16.6) Theorem. Let R be a finitely generated Cohen-Macaulay K-algebra, where K is a field, and suppose that the non-smooth locus in Spec R (over K) has codimension at least two (this condition corresponds to normality if the characteristic is zero or if K is perfect). Suppose that all components of Spec R have dimension d. Then ω_R, calculated using a homomorphism of a polynomial ring onto R, is isomorphic with the double dual, into R, of $\Omega^d_{R/K}$.

Proof. It suffices to consider one component of Spec R, and so we may suppose that R is a domain, since the condition implies that the non-regular locus has codimension at least two: this implies, in the presence of the Cohen-Macaulay property, that the depth of the ring on its defining ideal of the non-regular locus is least two, and so the ring is normal. Map a polynomial ring S of of dimension n onto R, and fix $\omega_R = \text{Ext}^{n-d}_S(R, \Omega^d_S)$ (recalling that $\Omega^d_S \cong S$). Let U be the open subset of Spec R where R is K-smooth, and let Z be its complement, which has codimension at least two. The sheaf $(\omega_R^\sim)|_U$ is then isomorphic with the sheaf Ω^d_U (we omit /K from the subscript), since for each open affine in a cover there is a canonical isomorphism, and these commute with localization. Thus, given an element of Ω^d_U we may restrict it to U. It then gives a section of ω_R on U. Since the defining ideal I of Z has depth at least two, and since ω_R is a faithful Cohen-Macaulay
module, we have that $H^0_I(\omega_R) = H^1_I(\omega_R) = 0$, and so this section extends uniquely to a section of ω_R^\sim, i.e., to an element of ω_R. This defines a map $\Omega^d R \to \omega_R$. Moreover, if we think of these modules as sheaves, the map is an isomorphism on U (where both modules are locally free of rank one). There is an induced map of double duals. But ω_R is S_2 and the ring is normal, whence ω_R is its own double dual. If $*$ denotes $\text{Hom}_R(_, R)$, we obtain a map $(\Omega^d R)^{**} \to \omega_R$ which is an isomorphism when the corresponding sheaves are restricted to U. In particular, it becomes an isomorphism if we tensor with the fraction field of the ring. Since these are torsion-free modules of rank one there cannot be any kernel, and the only issue is whether this map is onto. Because it becomes an isomorphism on U, we see that the cokernel cannot be supported at any height one prime. Thus, if $w \in \omega_R$ is not in $\Omega = (\Omega^d R)^{**}$ it is multiplied into Ω by an ideal of height at least two. But then, since Ω, itself a dual, is reflexive, w must be in Ω, a contradiction. \[\square\]

This gives a valuable computational tool, even in the local case, whose proof depends heavily on “global” ideas.

Exercise. Let R be the quotient of a polynomial ring S over a field in the x_{ij} of an $n \times n + 1$ matrix of indeterminates by the ideal generated by the size n minors. Show either using a resolution of R over S or by the method of differentials that ω_R may be identified with the ideal of size $n - 1$ minors of the first $n - 1$ columns of the matrix (or any other $n - 1$ columns). What is the type of R?

If we kill the $t \times t$ minors of an $r \times s$ matrix of indeterminates with $2 \leq t \leq r \leq s$ then it turns out that the canonical module is given by the $s - r$ power of the ideal generated by the $t - 1$ size minors of any $t - 1$ columns. The ideal generated by the $t - 1$ size minors of any $t - 1$ columns is a height one prime in this ring, and this prime turns out to represent a generator of the divisor class group, which can be shown to be \mathbb{Z} is in this case. Note that the ideals coming from different choices of $t - 1$ columns are distinct ideals all of which are isomorphic as modules. A detailed treatment is given in [BrV], Ch. 8.
17. CONNECTIONS OF LOCAL COHOMOLOGY WITH PROJECTIVE GEOMETRY

(17.1) Discussion: a review of some facts about projective space. Let K be a field. Let $R = K[x_0, \ldots, x_n]$ be a polynomial ring. Let $[M]_i$ denote the ith graded piece of the graded module M. Then $[R_{x_i}]_0$ is readily verified to be the polynomial ring over K in the n variables $x_j/x_i, \ 0 \leq j \leq n, \ j \neq i$, and the $n+1$ affine schemes $U_i = \text{Spec } [R_{x_i}]_0$ together form an open cover of projective n space, \mathbb{P}^n_K, over K. We often omit the subscript K. These affines fit together so that $(U_i)_{x_j/x_i} = (U_j)_{x_i/x_j}$. In fact, for every form F, $\text{Spec } [R_F]_0$ may be identified with an open set in \mathbb{P}^n. The elements of R are not functions on \mathbb{P}^n, but it does make sense to refer to the set $V(F)$ where F vanishes when F is homogeneous (and, likewise, one may refer to $V(I)$ when I is a homogeneous ideal of R).

A sheaf of modules \mathcal{F} on a scheme (X, \mathcal{O}_X) is quasicoherent if for every open affine $U \cong \text{Spec } T$, $\mathcal{F}|_U$ agrees with M^\sim (with \sim used in the affine sense) for some T-module M. It is enough to know this for some cover by open affines. A quasicoherent sheaf is coherent if, roughly speaking, it is locally finitely presented. For a Noetherian scheme this simply means that it is quasicoherent and that the module of sections on any open affine is finitely generated.

There is also a projective version of \sim: to distinguish it from the affine version, we adopt the nonstandard convention of writing it before the module. Let M be a finitely generated \mathbb{Z}-graded R-module. (Note: each graded piece will then be a finite dimensional vector space. There may be nonzero negatively graded components, but the finite generation of M guarantees there will only be finitely many.) Then we write $\sim M$ for the sheaf whose sections on the open set where the form F does not vanish are $[M_F]_0$: this is a finitely generated module over $[R_F]_0$. With this notation, $\sim R$ is the structure sheaf for \mathbb{P}^n_K.

Somewhat surprisingly, every coherent sheaf on \mathbb{P}^n_K has the form $\sim M$ from some finitely generated \mathbb{Z}-graded R-module M. In fact, the entire category of coherent sheaves on \mathbb{P}^n can be described by studying a certain category whose objects are the finitely generated \mathbb{Z}-graded, R-modules. The maps are different from the usual ones, however: we shall describe them shortly.
Before doing so, we want to point out that which sheaf one gets depends on the grading of M, not just the module structure. Isomorphic modules with different gradings will, in general, give non-isomorphic sheaves. The most important examples are the so-called “twists.” If M is a finitely generated \mathbb{Z}-graded R-module we let $M(t)$ be the same module graded so that $[M(t)]_i = M_{i+t}$.

We let $\mathcal{O}_X(t) = \sim R(t)$, which is a locally free sheaf of rank one. Now the tensor product of two coherent sheaves is a coherent sheaf (on any affine, the sections are found by simply tensoring the sections of the respective sheaves over the ring of sections on that affine). It turns out that if M, N are finitely generated \mathbb{Z}-graded R-modules that $\sim M \otimes_{\mathcal{O}_X} \sim N \cong \sim (M \otimes_R N)$, where $M \otimes_R N$ is graded so that if $u \in M$ and $v \in N$ are homogeneous then $\deg(u \otimes n) = \deg u + \deg v$. Thus,

$$(M \otimes_R N)_h = \Sigma_{i+j=h} \text{Im} (M_i \otimes N_j).$$

We can define the tth twist, $\mathcal{F}(t)$, of any coherent sheaf \mathcal{F} on \mathbb{P}^n, where t is any integer, by letting

$$\mathcal{F}(T) = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(t).$$

Since the graded tensor product $M \otimes_R R(t) \cong M(t)$, if one has that $\mathcal{F} \cong \sim M$ then $\mathcal{F}(t) \cong \sim M(t)$.

We shall also write $M_{\geq j}$ for the graded submodule $\bigoplus_{i \geq j} [M]_i$ of the finitely generated graded \mathbb{Z}-module M. Then $M/(M_{\geq j}) \cong \bigoplus_{i < j} [M]_i$ has finite length, and so is called by a power of every x_j. Now, whenever M has finite length we have that $\sim = 0$. Moreover, it is easy to see that $\sim (M_{\geq j}) \cong \sim M$ for all j. In order to compare the category of coherent sheaves on \mathbb{P}^n_K with the category of finitely generated \mathbb{Z}-graded R-modules one has to take account of this in a suitable manner.

For this reason, we define a morphism between two finitely generated \mathbb{Z}-graded modules M, N to be a degree 0 graded R-linear map from $M_{\geq j}$ to $N_{\geq j}$ for some sufficiently large j, modulo equivalence, where two maps are equivalent if they agree on $[M]_i$ for all sufficiently large i. Thus, $\text{Mor} (M, N)$ may be viewed as $\varprojlim_{\rightarrow} \text{Hom}_{\text{gr}} (M_{\geq j}, N_{\geq j})$, where Hom_{gr} indicates degree preserving R-linear maps. With this definition, the inclusion map of $M_{\geq j} \subseteq M$ is an isomorphism.

One of Serre’s main results in this direction (cf. [Se]) is that, with this notion of morphism, the assignment of $\sim M$ to M yields an equivalence of the category of \mathbb{Z}-graded R-modules with the category of coherent sheaves on \mathbb{P}^n. One recovers the graded pieces
$[M]_t$ of the modules M for sufficiently large t from the sheaf $\mathcal{F} = \sim M$ as the global sections of $\mathcal{F}(t)$. (One only expects, and one only needs, to be able to recover $[M]_t$ for sufficiently large t.)

17.2 Discussion: the calculation of cohomology. Now suppose that $\mathcal{F} = \sim M$ is a coherent sheaf on \mathbb{P}^n_K, where M is a finitely generated \mathbb{Z}-module. We want to understand, and calculate, the cohomology of the sheaf \mathcal{F} from a cohomology theory for R-modules. We can do so by using the Cech complex with respect to the affine open cover U_i of $X = \mathbb{P}^n$, where $U_i = \text{Spec } R[x_i]_0$. This leads to a Cech complex:

$$0 \to \bigoplus_i \mathcal{F}(U_i) \to \bigoplus_{i<j} \mathcal{F}(U_i \cap U_j) \to \cdots \mathcal{F}(U_1 \cap \cdots \cap U_n) \to 0$$

But $\mathcal{F}(U_{i_1} \cap \cdots \cap U_{i_k})$ consists of the sections of \mathcal{F} on the open set where $y = x_{i_1} \cdots x_{i_k}$ does not vanish, and these sections may be identified with 0th graded piece of M_y. Thus, the Cech complex above is simply the 0th graded piece of the complex

$$0 \to \bigoplus_i M_{x_i} \to \bigoplus_{i<j} M_{x_i x_j} \to \cdots \to M_{x_0 \cdots x_n} \to 0$$

which is almost the same as the complex $K^\bullet(x^\infty; M)$: one only has to drop the first the first (0th) term of the complex $K^\bullet(x^\infty; M)$ and shift the numbering by one.

Moreover, if one takes the tth graded piece of this complex one obtains the Cech complex for $\mathcal{F}(t)$ with respect to the same open cover. Now there is an obvious map of $[M_0]$ into the global sections of $\sim M$ (since $u \in [M]_0$ represents an element of every $[M_x]_0$: this corresponds to the map $M \to \bigoplus_i M_{x_i}$) and, likewise, of $[M]_t$ into the global sections of $\sim M(t)$ for every t.

We should also note that if M is a graded module over a graded ring and I is a homogeneous ideal then $H^i_I(M)$ is graded: one can see this by choosing homogenous generators f_j for I and using the fact $K^\bullet(f^\infty; M)$ is graded.

17.3 Theorem. Let M be a finitely generated \mathbb{Z}-graded module over the polynomial ring $R = K[x_1, \ldots, x_n]$ and let $\mathcal{F} = \sim M$ be the corresponding coherent sheaf on $X = \mathbb{P}^n_K$.

Let m be the maximal ideal of R generated by the x’s. Then:

(a) For $i \geq 1$, $H^i(X, \mathcal{F}(t)) \cong [H^{i+1}_m(M)]_t$, so that $H^{i+1}_m(M) \cong \bigoplus_t H^i(X, (t))$.

(b) The map $\Theta: M \to \bigoplus_{t \in \mathbb{Z}} H^0(X, \mathcal{F}(t))$ sending M_t into $H^0(X, \mathcal{F}(t))$ in the obvious way is injective if and only if $\text{depth}_m M \geq 1$ and bijective if and only if $\text{depth}_m M \geq 2$.

(c) In consequence, depth $M \geq d \geq 3$ if and only if Θ is bijective and $H^i(X, \mathcal{F}(t)) = 0$ for all $t \in \mathbb{Z}$ and all i with $1 \leq i \leq d - 1$.

Proof. We have already seen that $\bigoplus_t H^i(X, \mathcal{F}(t))$ may be identified with the cohomology of the complex $K^\bullet(x^\infty; M)$ truncated at the beginning. This implies the isomorphism in (a) at once and also yields an exact sequence:

$$0 \to H^0_m(M) \to M \xrightarrow{\Theta} \bigoplus_t H^0(X, \mathcal{F}(t)) \to H^1_m(M) \to 0$$

Parts (b) and (c) now follow from the fact that the first non-vanishing $H^i_m(M)$ occurs for $i = \text{depth}_m M$. □

(17.4) **Exercise.** Let $X = \mathbb{P}_K^n$. Then
(a) $H^0(X, \mathcal{O}_X(t)) \cong [K[x_0, \ldots, x_n]]_t$, the vector space of monomials of degree t in the x_j.
(b) $H^i(X, \mathcal{O}_X(t)) = 0$ if $i < n$.
(c) $H^n(X, \mathcal{O}_X(t))$ is isomorphic with the vector space of monomials of degree $-t$ in $y_0 \cdots y_n K[y_0, \ldots, y_n]$ (if one gives the y_i degree 1). Thus, it vanishes if $t > -n - 1$ and has dimension one when $t = -n - 1$. (One may think of y_i as x_i^{-1}, and identify $x_1^{-1} \cdots x_n^{-1} K[x_1^{-1}, \ldots, x_n^{-1}]$ with $H^{n+1}_{(2)}(R)$.)

(17.5) **Discussion.** If Z is a projective scheme (i.e. a closed subscheme of some \mathbb{P}_K^n) and we fix the embedding of Z in $\mathbb{P}^n = X$, the pullback of $\mathcal{O}_X(t)$ to Z is a locally free sheaf of rank one on Z: we denote it $\mathcal{O}_Z(t)$. (The sheaf $\mathcal{O}_Z(1)$ is called a very ample line bundle on Z.) Given a coherent sheaf \mathcal{F} on Z we may then define $\mathcal{F}(t) = \mathcal{F} \otimes_{\mathcal{O}_Z} \mathcal{O}_Z(t)$.

Note that any coherent sheaf \mathcal{F} on Z may be “extended by 0” to all of \mathbb{P}^n_K: the sheaf obtained is technically the direct image $\iota_* \mathcal{F}$ with respect to the inclusion map $\iota: Z \to \mathbb{P}^n_K$. The sections of $\iota_* \mathcal{F}$ on an affine U are those of \mathcal{F} on $U \cap Z$. The new sheaf, restricted to $\mathbb{P}^n - Z$, is zero. This is the global equivalent of viewing an (R/I)-module as an R-module by restriction of scalars. Note than an open affine cover of \mathbb{P}^n_K, intersected with Z, gives an open affine cover of Z (because a closed subscheme of an affine scheme is affine). The Cech complexes obtained from $\iota_* \mathcal{F}$ with respect to an open cover of \mathbb{P}^n and \mathcal{F} with respect to its intersection with Z are identical. Thus, $H^i(\mathbb{P}^n_K, \iota_* \mathcal{F}) \cong H^i(Z, \mathcal{F})$. The results of (17.4) above and (17.6) below are theorems of Serre [Se] that are easy corollaries of the local cohomology theory developed here.

(17.6) **Theorem.** For any coherent sheaf \mathcal{F} on the projection scheme Z over K:
(a) $H^i(Z, \mathcal{F})$ is a finite-dimensional vector space over K.
(b) If \(i \geq 1 \) then \(H^i(Z, \mathcal{F}(t)) = 0 \) if \(i > \dim Z \) (or if \(i > \dim \text{Supp} \mathcal{F} \), where \(\text{Supp} \mathcal{F} \) is the support of \(\mathcal{F} \), i.e., \(\{ z \in Z : \mathcal{F}_z \neq 0 \} \)).

Proof. By the remarks above, by considering \(\iota_\ast \mathcal{F} \), we can reduce to the case where \(\mathcal{F} \) is a sheaf on \(X = \mathbb{P}^n \) itself (in part (c) we prove the version stated in terms of the support of \(\mathcal{F} \)).

For (b) note that we know that \(H = \bigoplus_i H^i(X, \mathcal{F}(t)) \) is a graded module over \(R = K[x_0, \ldots, x_n] \) for \(i \geq 1 \). The decreasing chain of submodules \(H_{\geq t} \) must therefore be eventually stable, which can only happen if all graded pieces are eventually zero. Moreover, \(H^i(X, \mathcal{F}(t)) \cong (H_{\geq t})/(H_{\geq t+1}) \) is a vector space with DCC, and therefore finite-dimensional for \(i \geq 1 \). It remains to prove part (a) when \(i = 0 \). One verifies it directly for the sheaves \(\mathcal{O}_X(t) \) (cf. (17.4) above).

Suppose that \(\mathcal{F} = \sim M \) and that \(M \) has homogeneous generators \(v_1, \ldots, v_r \) of degrees \(d_1, \ldots, d_r \). Then there is a degree preserving map of the graded module \(\bigoplus_j R(-d_j) \) onto \(M \) that sends the element 1 in \(R(-d_j) \) (in which it has degree \(d_j \)) to \(v_j \). This yields a surjection of sheaves \(\bigoplus_j \mathcal{O}_X(-d_j) \to \mathcal{F} \) and, hence, a short exact sequence of sheaves:

\[
0 \to \mathcal{G} \to \bigoplus_j \mathcal{O}_X(-d_j) \to \mathcal{F} \to 0
\]

where \(\mathcal{G} \) is simply the kernel of the map. The long exact sequence for cohomology yields:

\[
\cdots \to \bigoplus_j H^0(X, \mathcal{O}_X(-d_j)) \to H^0(X, \mathcal{F}) \to H^1(X, \mathcal{G}) \to \cdots
\]

Since we already know that the terms other than the middle term are finite-dimensional vector spaces, the result follows.

Part (c) can be proved as follows: suppose that \(\mathcal{F} = \sim M \), where \(M \) is graded. One shows that \(\dim \text{Supp} \mathcal{F} = \dim M - 1 \). This implies that \(H^j_{\geq m+1}(M) = 0 \) if \(j > \dim \text{Supp} \mathcal{F} \), for then \(j + 1 > \dim M \), and the result now follows. (However, one can also prove part (c) by observing that when the support has dimension \(d \) it can be covered by \(d + 1 \) open affinities.) \(\square \)

Note that the proof that the sections of a coherent sheaf on a projective scheme are a finite-dimensional vector space requires first establishing the result for higher cohomology. Serre’s proof uses reverse induction on \(i \), establishing the result for the highest cohomology first and working back down to the sections.
(17.7) Serre-Grothendieck duality: discussion. Let Z be a projective scheme over a field K and suppose that Z is Cohen-Macaulay, i.e., all its local rings are Cohen-Macaulay. (A stronger condition would be for it to have a homogenous coordinate ring that is Cohen-Macaulay.) Suppose that all components have the same dimension d. We can define a canonical sheaf (or dualizing sheaf) on Z, ω_Z, as follows: embed Z in a projective space $X = \mathbb{P}^n_K$, and then let $\omega_Z \cong \mathcal{E}xt^{n-d}_O(\mathcal{O}_Z, \Omega^n_X)$. The sections on any open affine will give a canonical module for the ring of sections corresponding to that affine. Notice that if Z is smooth over K, our earlier results imply that ω_Z is canonically isomorphic with Ω^d_Z. The sheaf ω_Z is independent of the embedding of Z into a projective space: different choices of embeddings yield isomorphic sheaves.

Serre-Grothendieck duality asserts that for every coherent sheaf F on Z,

$$H^i(Z, F) \cong \text{Ext}^{d-i}_{\mathcal{O}_Z}(F, \omega_Z)^*,$$

where $_^*$ denotes $\text{Hom}_K(_, K)$. In fact, $\omega_X = \Omega^n_X$ is easily computed to be $\mathcal{O}_X(-n-1)$. Once can choose an isomorphism of $H^n(X, \Omega^n_X) \cong K$. This induces a map $H^d(Z, \omega_Z) \to K$ which, when composed with the Yoneda pairing, gives a pairing

$$H^i(Z, F) \times \text{Ext}^{d-i}_{\mathcal{O}_Z}(F, \omega_Z) \to H^d(Z, \omega_Z) \to K$$

which is nonsingular, i.e it induces an isomorphism

$$H^i(Z, F) \cong \text{Ext}^{d-i}_{\mathcal{O}_Z}(F, \omega_Z)^*.$$

These isomorphisms are much like graded pieces of a local duality isomorphism. The case where $Z = \mathbb{P}^n$ is called Serre duality.

When F is a locally free sheaf (or vector bundle) $\text{Ext}^{d-i}_{\mathcal{O}_Z}(F, \omega_Z)$ may be identified with $H^{d-i}(\text{Hom}_{\mathcal{O}_Z}(F, \omega_Z))$ and $\text{Hom}_{\mathcal{O}_Z}(F, \omega_Z)$ may be identified with $F^\vee \otimes_{\mathcal{O}_Z} \omega_Z$ where $F^\vee = \text{Hom}_{\mathcal{O}_Z}(F, \omega_Z)$. When Z is smooth, $\omega \cong \Omega^d_Z$, and we have that

$$H^i(Z, F) \cong H^{d-i}(Z, F^\vee \otimes_{\mathcal{O}_Z} \omega_Z \Omega^d_Z)^*.$$

In particular, if Z is a smooth projective curve, then for a line bundle F (locally free sheaf of rank one) we have $H^1(Z, F) \cong H^0(F^\vee \otimes_{\mathcal{O}_Z} \omega_Z \Omega_Z)^*$. Here, Ω_Z is itself a line bundle. This is “Roch’s” part of the Riemann-Roch theorem. The rest of the theorem says that if $\chi(F) = \dim_K H^0(Z, F) - \dim_K H^1(Z, F)$ (the higher cohomology all vanishes) then
\(\chi(\mathcal{F}) - \chi(\mathcal{O}_Z) = \deg \mathcal{F} \) (we will give the definition shortly). Here, \(\chi(\mathcal{O}_Z) = 1 - g \) where \(g = \dim_K H^1(Z, \mathcal{O}_Z) \) the genus of the curve \(Z \).

(17.8) Discussion. We continue briefly our remarks on the Riemann-Roch theorem for smooth projective curves.

Let \(\mathcal{F} \) be a line bundle (locally free sheaf of rank one) on a smooth, connected projective curve \(Z \) over an algebraically closed field \(K \). On a sufficiently small nonempty open affine \(U \) in \(Z \) (but keep in mind that \(U \) will contain all but finitely many points of \(Z \)) \(\mathcal{F} \) will have a section, \(\sigma \). Think of two such sections as equivalent if they agree when restricted to some smaller nonempty open affine. These equivalence classes are called meromorphic sections of \(\mathcal{F} \). The meromorphic sections \(K(Z) \) of \(\mathcal{O}_Z \) may be identified with the fraction field of any of the rings \(\mathcal{O}_Z(U) \) for \(U \) a nonempty open affine in \(Z \). It is easy to see that the meromorphic sections of \(\mathcal{F} \) form a one-dimensional vector space over \(K(Z) \), but there is no canonical generator.

By a divisor on \(Z \) we mean a formal \(\mathbb{Z} \)-linear combination of points of \(Z \), i.e., an element of the free abelian group whose generators are the points of \(Z \). Given a nonzero element \(f \in K(Z) \) we can form a divisor \(\text{div} f \) such that for \(z \in Z \) the coefficient of \(z \) in \(\text{div} f \) is the order of \(f \) thought of as an element of the fraction field of \(\mathcal{O}_{Z,z} \): this ring is a DVR. This is the divisor of zeros and poles of \(f \). Given a divisor \(D \) we can form a line bundle \(\mathcal{O}_Z(D) \) whose sections on \(U \) are those meromorphic functions \(f \) such that \(\text{div} f + D \) has nonnegative coefficients at all points of \(U \). This bundle is a subsheaf of the constant sheaf on \(Z \) with coefficients in \(K(Z) \). If \(g \) is a nonzero meromorphic function then replacing \(D \) by \(D + \text{div} g \) replaces \(\mathcal{O}_Z(D) \) by the isomorphic bundle \(g \mathcal{O}_Z(D) \).

On the other hand, given a line bundle \(\mathcal{F} \) and a meromorphic section \(\sigma \) we can form a divisor \(D \) such that the coefficient of \(z \) is the order (in the fraction field of \(\mathcal{O}_{Z,z} \)) of the element \(a \in K(Z) \) such that \(a^{-1} \sigma \) generates \(\mathcal{F}_z \) as an \(\mathcal{O}_{Z,z} \)-module. Each section of \(\mathcal{F} \) on \(U \) can be written uniquely in the form \(b \sigma \) where \(b \) is meromorphic, and the condition on a meromorphic function \(b \) for \(b \sigma \) to be a section is that for all \(z \in U \), \(\text{ord}_z b \geq \text{ord}_z a^{-1} \), where \(a^{-1} \sigma \) is the generator of \(\mathcal{F}_z \). This says that \(b \sigma \) is a section of \(\mathcal{O}_Z(D) \), and we see that \(\mathcal{F} \cong \mathcal{O}_Z(D) \).

The upshot of this discussion is that there is a bijection between isomorphism classes of line bundles on \(Z \) and equivalence classes of divisors on \(Z \), where two divisors are equivalent if they differ by the divisor of a nonzero meromorphic function.

The degree of a divisor is the sum of its coefficients. It is not hard to prove that the
degree of the divisor of a meromorphic function is zero. Thus, we may define the degree of a line bundle to be the degree of any divisor that represents it.

Now, if D is any divisor and z is a point of Z, it is easy to see that there is an exact sequence of sheaves:
$$0 \rightarrow \mathcal{O}_Z(D) \rightarrow \mathcal{O}_Z(D + z) \rightarrow \mathcal{S}(z) \rightarrow 0$$
where the first nonzero map is an inclusion map. Moreover, $\mathcal{S}(z)$ is a sheaf supported only at z, and its sections on any neighborhood of z consist of a copy of K. It follows that $\chi(\mathcal{O}_Z(D + z)) = \chi(\mathcal{O}_Z(D)) + \chi(\mathcal{S}(z))$. But $H^0(Z, \mathcal{S}(z)) \cong K$ while the higher cohomology vanishes, since $\mathcal{S}(z)$ is supported at only one point. This shows that $\chi(\mathcal{S}(z)) = 1$. Thus, adding one point to a divisor increases χ of the corresponding bundle by one, and it follows that subtracting a point decreases it by one. Starting with the divisor 0 (corresponding to \mathcal{O}_Z) we can add and subtract points one at a time until we obtain a given divisor D. It follows that
$$\chi(\mathcal{O}_Z(D)) = \chi(0_Z) + \deg D = 1 - g + \deg D.$$
This completes the proof of the Riemann-Roch theorem, given duality.

18. COHOMLOGICAL DIMENSION AND GENERATION OF IDEALS UP TO RADICALS

The following result is due to Peskine and Szpiro in their joint thesis [PS]:

(18.1) Theorem. Let R be a regular domain of dimension n of positive prime characteristic p, and let I be an ideal of R of height h such that R/I is Cohen-Macaulay. Then $H^i_I(R) = 0$ for $i > h$.

Proof. The issue is local on R and we assume that R is local. The key point is that the application of Frobenius preserves the acyclicity of a finite free resolution of R/I over R, since $F^e : R \rightarrow R$ is flat when R is regular. It follows that $\text{pd}_R R/I^{[q]} = \text{pd}_R R/I$ for all $q = p^e$. Thus, each $R/I^{[q]}$ has the same depth as R/I, and so all of the modules $R/I^{[q]}$ are Cohen-Macaulay of projective dimension h. But we may then calculate $H^j_I(R) = \lim_q \text{Ext}^j_R(R/I^{[q]}, R)$, and when $R/I^{[q]}$ is Cohen-Macaulay, there is a unique non-vanishing Ext, occurring in this case for $j = h$. The result is now immediate. \qed

This result is quite false in characteristic zero!
We shall now focus on giving counterexamples to this theorem in characteristic zero by studying the case where R is a polynomial ring in $(n+1)n$ indeterminates x_{ij} over a field of characteristic zero K, and I is the ideal generated by the size n minors Δ_j of the matrix $X = (x_{ij})$, where Δ_j is the determinant of the $n \times n$ matrix obtained by deleting the jth column. It is not difficult to show that one has a free resolution

$$0 \to R^n \xrightarrow{X} R^{n+1} \xrightarrow{\Delta} R \to R/I \to 0$$

where Δ is the $1 \times (n+1)$ matrix whose jth entry is $(-1)^{j-1}\Delta_j$. This shows that $\text{depth}_m R/I = (n+1)n - 2$. Since $\text{ht} I \geq 2$, clearly, $\text{dim} R/I \leq (n+1)n - 2$. Thus, we must have equality, and R/I is Cohen-Macaulay (this is valid in all characteristics). Moreover, I has height 2. In characteristic p, we then have $H^j_I(R) = 0$ for $j \geq 3$ by the result of Peskine-Szpiro.

We shall prove, however, in two quite different ways, that, in equal characteristic zero, $H^{n+1}_I(R) \neq 0$. This shows that, in equal characteristic zero, I requires $n+1$ generators up to radicals! (The same is true in characteristic p, but requires local étale cohomology for the proof.) This appears to be just as difficult when $n = 2$ as in the general case.

The key point in the first proof is that, in characteristic zero, the K-homomorphism $A = K[\Delta_1, \ldots, \Delta_{n+1}] \subseteq R$ splits over A: A is a direct summand of R as an A-module. Moreover, A is a polynomial ring in the Δ’s. Let Q be the ideal of A generated by the Δ’s. Assuming the splitting, we get an injection of $H^{n+1}_Q(A) \to H^{n+1}_Q(R) = H^{n+1}_{QR}(R)$, and we know that $H^{n+1}_Q(A)$ is not zero, since Q is a maximal ideal of A of height $n+1$. This shows that $H^{n+1}_I(R) \neq 0$.

One has the splitting because $G = SL(n, K)$ is a reductive linear algebraic group, and is we let G act linearly on R by letting $\alpha \in G$ send the entries of the matrix X to the entries of the matrix αX, A is the fixed ring of the action one then obtains on R. These results may be found in H. Weyl’s book [W].

The second proof that $H^{n+1}_I(R)$ is not zero in equal characteristic zero is by topological methods that are quite instructive. The idea is to relate the vanishing of local cohomology in the algebraic sense to the vanishing of singular cohomology in a purely topological sense: the transition is made by studying the cohomology of sheaves of differential forms on suitable varieties. There is a lot of machinery underlying this argument (e.g., algebraic DeRham cohomology, whose definition requires hypercohomology, spectral sequences, etc.). I will sketch the argument, giving the definitions, but omitting one key proof (the theorem
of Grothendieck that the algebraic DeRham cohomology of a smooth variety of finite type over \(\mathbb{C} \) is the same as the singular cohomology).

Let \(X \) denote a smooth scheme of dimension \(d \) of finite type over a field \(K \). The universal differentials from the rings of sections of \(\mathcal{O}_X \) on open affines to the corresponding modules of sections of \(\Omega^1_X \) (the subscript \(/K \) is omitted throughout here) yield a \(K \)-linear map \(\mathcal{O}_X \rightarrow \Omega^1_X \), and this extends to give a complex \(\Omega^\bullet_X \) of \(D \)-linear maps:

\[
0 \rightarrow 0_X \rightarrow \Omega^1_X \rightarrow \Omega^2_X \rightarrow \cdots \rightarrow \Omega^n_X \rightarrow 0
\]

called the \textit{algebraic DeRham complex}. An analogous construction on a \(C^\infty \) manifold using \(\mathbb{R} \)-valued differential forms yields an exact sequence of sheaves: when one takes global sections, the cohomology gives the singular chomology of \(X \). Here, we do not get an exact sequence of sheaves (i.e., even locally, a “closed” differential form is not necessarily “exact” in the algebraic category). Instead of taking ordinary cohomology, we take \textit{hypercohomology}: Briefly, we write down an injective resolution of the complex — this yields a double complex of injective sheaves in which the \(j \) th column (which begins with \(\Omega^j_X \)) is an injective resolution of \(\Omega^j_X \), while each row is a complex of injective modules. Moreover, this can be set up (and is required to be set up) so that if one takes the cohomology of all the horizontal rows, each at the \(j \) th spot, together, as the row varies one gets an injective resolution of the cohomology of \(\Omega^\bullet_X \) at the \(j \)th spot. Consider the double complex of injectives: from it one forms a total complex. Now take global sections and calculate the cohomology. The result is called the \textit{hypercohomology} of the complex \(\Omega^\bullet_X \), and we denote it \(H^\bullet(X, \Omega^\bullet_X) \).

We now define the algebraic DeRham cohomology \(H^i_{DR}(X) \) by the formula \(H_{DR}^i(X) \cong H^i(X, \Omega^\bullet_X) \). This may seem cumbersome, but it gives the right answer: a theorem of Grothendieck asserts that when \(X \) is a smooth variety of finite type over \(\mathbb{C} \), the field of complex numbers, then \(H_{DR}^i(X) \cong H^i(X^h; \mathbb{C}) \), where \(X^h \) is the underlying (Hausdorff) topological space of \(X \) in the usual topology (so that it is a real \(2d \)-manifold) and \(H^i \) denotes singular cohomology.

There is a spectral sequence for hypercohomology: it is simply one of the spectral sequences associated with the double complex utilized in the definition, and in this instance it yields a spectral sequence \(H^q(X, \Omega^p_X) \Rightarrow H^n_{DR}(X) \). This means that there is a complex in which the \(n \)th term is \(\bigoplus_{p+q=n} H^q(X, \Omega^p_X) \) with the following property: one can take its cohomology, get a new complex, take the cohomology again, get a new complex, etc.,
continuing in this way, until, at any given spot, one has, eventually, as the “stable” answer, an associated graded module of $H^n_{\text{DR}}(X)$. This may seem like weak information, but it suffices to deduce, for example, that if $H^q(X, \Omega^p_X)$ vanishes whenever $p + q = n$, then $H^n_{\text{DR}}(x) = 0$.

We refer to [Ha2], Ch III, § 7, for more information. Note that we have at once:

(18.2) **Proposition.** Let X be a smooth variety of finite type over the complex numbers \mathbb{C} of dimension d. If $H^i(X, \mathcal{F}) = 0$ for all coherent sheaves \mathcal{F} on X when $i > r$, then $H^j(X; \mathbb{C}) = 0$ for $j > d + r$.

Proof. $H^j(X; \mathbb{C}) \cong H^j_{\text{DR}}(X)$, and so it suffices to show that $H^q(x, \Omega^p) = 0$ for $q + p \geq j$.

But either $p > d$ (in which case $\Omega^p = 0$) or $q > r$, which forces $H^q(X, \Omega^p)$ to vanish. □

(18.3) **A topological proof that** $H^{n+1}_I(R) \neq 0$. We again consider an $n+1$ by n matrix of indeterminates. It is not hard to deduce the case of an arbitrary field K of characteristic 0 from the case where $K = \mathbb{C}$: henceforth we assume that $K = \mathbb{C}$. Let I be the ideal generated by the size n minors of the matrix in $R = \mathbb{C}[X_{ij}]$. If $H^i_I(R) = 0$ for $i = n + 1$ then it is zero for all $i \geq n + 1$. It then follows that $H^i(X, \mathcal{F}) = 0$ for $i \geq n$ for every quasicoherent sheaf \mathcal{F} on the quasifine scheme $X = \text{Spec } R - V(I)$, since this cohomology agrees with the local cohomology $H^{i+1}_I(M)$ for some R-module M. It now follows from the proposition that if (by slight abuse of notation) X is the manifold $\mathbb{C}^n - V(I)$ consisting of all $n + 1$ by n matrices of rank n, then $H^{(n+1)n+n}(X; \mathbb{C}) = H^{(n+2)n}(X; \mathbb{C}) = 0$.

We can now complete the argument by purely topological methods: the point is that X is homotopic to a compact orientable manifold of real dimension $(n + 2)n$, whose highest cohomology can therefore not be zero.

The idea of the proof of this homotopy is to adjust, continuously, the length of the first column of the matrix until it has length one; then to change the second column by subtracting off a multiple of the first (the multiplier varies continuously) until it is orthogonal to the first, then to change the length of the second column until it is one, etc. This idea shows that C is homotopic to the space $Y = Y(n)$ of $n + 1$ by n matrices such that each column is a unit vector and the columns are mutually orthogonal. Y is a compact manifold. The first column varies in a sphere of dimension $2n + 1$. For a given first column the second column varies in a sphere of dimension $2n - 1$, and so forth. If all columns but the last are held fixed, the last column varies in a 3-sphere. Thus, the dimension of Y is $(2n + 1) + (2n - 1) + \cdots + 3 = (n + 2)n$. The projection map from $Y(n)$ to S^{2n+1} which takes each matrix to its first column makes Y a bundle over S^{2n+1}.

Since \(S^{2n+1} \) is not only orientable but simply connected, and since, inductively, each fiber (which may be thought of as a \(Y(n-1) \)) is orientable, the total space \(Y \) is orientable. \(\Box \)

19. THE LOCAL HARTSHORNE-LICHTENBAUM VANISHING THEOREM

Part (a) of the theorem below is a rather simple statement about cohomological dimension in complete local domains. Part (b) is a somewhat more technical elaboration that gives a best possible result along these lines. The proof of part (b) reduces very quickly to establishing part (a).

(19.1) Theorem (the local Harshorne-Lichtenbaum vanishing theorem). Let \((R,M,K)\) be a local ring of dimension \(d\) and \(I\) a proper ideal of \(R\).

(a) If \(R\) is a complete local domain and \(I\) is not primary to \(m\) then \(H^d_I(R) = 0\) (i.e. the cohomological dimension of the pair \((R,I)\) is at most \(d-1\) \(\Rightarrow H^d_I(M) = 0\) for every \(R\)-module \(M\)).

(b) \(H^d_I(R) = 0\) if and only if for every minimal prime \(P\) of the completion \(\hat{R}\) of \(R\) such that \(\dim \hat{R}/P = d\), \(I \hat{R} + P\) is not primary to the maximal ideal of \(\hat{R}\).

Proof that \((a) \Rightarrow (b)\). Assume part (a). Since \(\hat{R}\) is faithfully flat over \(R\) and \(H^d_{IR}(\hat{R}) \cong H^d_I(\hat{R}) \cong \hat{R} \otimes_R H^d_I(R)\), we might as well assume that \(R\) is complete. Suppose that for some minimal prime \(P\) of \(R\) with \(\dim R/P = d\) we have that \(P + I\) is primary to \(m\). The long exact sequence for local cohomology yields a surjection \(H^d_I(R) \twoheadrightarrow H^d_I(R/P)\) (since \(H^{d+1}_I\) vanishes), and since \(I\) expands to an ideal \(J\) primary to the maximal ideal in \(R/P\) and \(H^d_J(R/P) \cong H^d_J(R/P) \neq 0\), we see that “only if” part holds. Now suppose that for every minimal prime \(P\) of \(R\) with \(\dim R/P = d\) we have that \(I + P\) is not primary to \(m\). For minimal primes \(P\) with \(\dim R/P < d\) we evidently have \(H^d_J(R/P) = 0\), while for the other minimal primes \(P\) we have that \(H^d_I(R/P) = H^d_J(R/P)\) with \(J = I(R/P)\), and \(J\) is not primary to \(m\), so that it follows from part (a) that \(H^d_J(R/P) = 0\). Since \(H^d_J(R/P) = 0\) for every minimal prime \(P\) of \(R\) and since every finitely generated \(R\)-module has a finite filtration by modules each of which is killed by some minimal prime \(P\), it follows that \(H^d_I(M) = 0\) for every finitely generated (and, hence, every) \(R\)-module \(M\). \(\Box\)

Thus, part (a) is really the heart of the theorem. We defer its proof, however, until we have established several lemmas.
(19.2) Discussion. Let R be a Noetherian ring. If $I \subseteq J \subseteq R$ then there is a surjection $R/I^t \to R/J^t$ for all t, and these maps yield maps $\Ext^i_R(R/J^t, M) \to \Ext^i_R(R/I^t, M)$ for all i, t and R-modules M. Thus, there is a natural induced map $H^i_J(M) \to H^i_I(M)$. E.g., when $i = 0$, sections supported on $V(J)$ are clearly supported on $V(I)$.

In the case where $J = I + xR$ we have for H^0 an obvious exact sequence $0 \to H^0_J(M) \to H^0_I(M) \to H^0_I(M_x)$ which is readily seen to be exact when M is injective. (This comes down to the case where $M = E(R/P)$, and we may assume that R is local and M is the injective hull of the residue field. The map $M \to M_x$ is then either an isomorphism or else zero. The quasicoherent sheaves corresponding to injective modules over Noetherian rings are flasque.) Thus, if we apply the three indicated functors $H^0_J(-), H^0_I(-), \text{and } H^0_I(-_x)$ to an injective resolution of M we get a short exact sequence of complexes leading to a long exact sequence of cohomology. To wit:

(19.3) Proposition. Let $J = I + xR$, where $I \subseteq J \subseteq R$ are ideals of the Noetherian ring R and $x \in R$. Let M be an R-module. Then there is a long exact sequence of cohomology:

$$
\cdots \to H^{i-1}_J(M_x) \to H^i_J(M) \to H^i_I(M) \to H^i_I(M_x) \to H^i_J + 1(M) \to \cdots
$$

that is functorial in M. □

(19.4) Remark. An alternative proof can be based on the fact that if $\underline{z} = z_1, \ldots, z_n$ generate I then $K^{\bullet-1}(\underline{z}^\infty; M)$ is a subcomplex of $K^{\bullet}(\underline{z}^\infty, x^\infty; M)$, and the quotient complex is easily identified with the complex $K^{\bullet}(\underline{z}^\infty; M)$.

(19.5) Discussion. We now claim that part (a) of Theorem (19.1) reduces to the case where I is a prime ideal of R such that $\dim R/I = 1$. For suppose that there is a counterexample and choose one with I maximal. If I is not a prime ideal of R such that $\dim R/I = 1$, then there exists an element $x \in m – I$ such that $J = I + xR$ is not m-primary. Then we get:

$$
\cdots \to H^d_J(R) \to H^d_J(R) \to H^d_J(R_x) \to \cdots
$$

and $\dim R_x < d$, so that $H^d_J(R_x) = 0$ Thus, the map $H^d_J(R) \to H^d_J(R)$ is onto, and so J is also a counterexample, contradicting the maximality of I. Thus, to complete the proof of Theorem (19.1), it suffices to prove:

(19.6) Theorem. Let (R, m, K) be a complete local domain with $\dim R = d$ and let P be a prime with $\dim R/P = 1$. Then $H^d_P(R) = 0$.

The rest of the proof consists of two reductions: first, we reduce to the case where R is Gorenstein. Second, we show that in the Gorenstein case one can compute local cohomology using symbolic powers instead of ordinary powers. The particular reduction to the Gorenstein case that we are going to use is due to M. Brodmann and Craig Huneke, independently.

We first note:

(19.7) Lemma. Let R be a normal domain and let S be a domain generated over R by one integral element, s. Then the minimal monic polynomial f of s over the fraction field of R has coefficients in R, and $S \cong R[x]/fA[x]$.

Proof. Let T be an integral closure of S in an algebraically closed field L containing the fraction field of S. Then f splits over L. Let G be a monic polynomial over R satisfied by s. Then f divides G (working over the fraction field of R), which shows that all roots of f are roots of G and, hence, integral over R. The coefficients of f are elementary symmetric functions of its roots, and, hence, are both integral over R and in the fraction field of R. Since R is normal, the coefficients of f are in R. Thus $f \in R[x]$.

Let $I = \ker (R[x] \to R[s])$ for the R-algebra map sending x to s. Then $R[s] \cong R[x]/I$. Evidently, $f \in I$. Now suppose that $F \in I$. Carry out the division algorithm for dividing F by f over R: recall that f is monic here. The result is the same as if we were working over the fraction field of R. Since $F(s) = 0$, if $f \mid F$ in $R[x]$. Thus, $I = fR[x]$.

(19.8) Proof that (19.6) for Gorenstein domains implies (19.6) for domains in general. Let P be a prime ideal of the complete local domain (R, m, K) such that $\dim R/P = 1$ Let $\dim R = d$. Choose a system of parameters x_1, \ldots, x_d for R such that $x_1, \ldots, x_{d-1} \in P$. In the mixed characteristic p case it is possible to do this so that one of the x_i is equal to p (where $i < d$ if $p \in P$ and $i = d$ if $p \not\in P$), by standard prime avoidance arguments. Let V be a coefficient ring for R (which will be a field in the equicharacteristic case and will be a DVR (V, pV) in the mixed characteristic case) and form a regular ring by adjoining the power series in the parameters (other than p, in mixed characteristic) to V. In this way we obtain a regular ring $A \subseteq R$ such $P \cap A$ has height $d - 1$ (it will contain x_i for $i \leq d - 1$). Let $P = Q_1, \ldots, Q_r$ denote the prime ideals of R lying over $(x_1, \ldots, x_{d-1})A$. Then we can choose θ in P and not in any other of the Q_j. Let $B = A[\theta]$. Then B is a complete local domain, and by (19.7) $B \cong A[x]/fA[x] \cong A[[x]]/fA[[x]]$, since θ is in the maximal ideal, and, hence, B is Gorenstein. (The quotient ring of a regular ring by an ideal generated by an R-sequence is Gorenstein. In this case, the R-sequence has length
one.) It is then clear that \(P \) is the only prime of \(B \) lying over \(p = P \cap B \), since any other must lie over \((x_1, \ldots, x_{d-1})A\), and so must be one of the \(Q' \)s, and the others are excluded since they do not contain \(\theta \). This implies that \(P \) is the radical of the ideal \(pR \). Thus, \(H^d_p(M) = H^d_p(M) \) (with \(M \) viewed as a \(B \)-module on the right), and so it suffices to prove the theorem for \(B \) and \(p \).

We next observe the following very useful fact, due to Chevalley:

\textbf{(19.9) Theorem (Chevalley’s theorem).} Let \(M \) be a finitely generated module over a complete local ring \((R, m, K)\) and let \(\{M_t\}_t \) denote a nonincreasing sequence of submodules. Then \(\bigcap_t M_t = 0 \) if and only if for every integer \(N > 0 \) there exists \(t \) such that \(M_t \subseteq m^N M \).

\textit{Proof.} The “if” part is clear. Suppose that the intersection is 0. Let \(V_{tN} \) denote the image of \(M_t \) in \(M/m^N M \). Then the \(V_{tN} \) do not increase as \(t \) increases, and so are stable for all large \(t \). Call the stable image \(V_N \). Then the maps \(M/m^N M \to M/m^N M \) induce surjections \(V_{j+1} \to V_j \). The inverse limit of the \(V_N \) may be identified with a submodule of the inverse limit of the \(M/m^N M \), i.e. with a submodule of \(M \), and any element of the inverse limit is in \(\bigcap_t (\bigcap_N (M_t + m^N M)) = \bigcap_t M_t \). If any \(V_N \) is not zero, then since the maps \(V_{j+1} \to V_j \) are surjective, the inverse limit of the \(V_j \) is not zero. But \(V_N \) is zero if and only if \(M_t \subseteq m^N M \) for all \(t \gg 0 \).

Thus, in a complete finitely generated module, a nonincreasing sequence of submodules has intersection 0 if and only if the terms are eventually contained in arbitrarily high powers of the maximal ideal times the module. From this we can deduce:

\textbf{(19.10) Proposition.} Let \((R, m, K)\) be a complete local domain and let \(P \) be a prime ideal such that \(\dim R/P = 1 \). Then the powers \(P^t \) of \(P \) and the symbolic powers \(P^{(t)} \) of \(P \) are cofinal. In other words, for every integer \(t > 0 \) there exists \(N \) such that \(P^{(N)} \subseteq P^t \) (of course, we always have \(P^t \subseteq P^{(t)} \)).

\textit{Proof.} First note that \(\bigcap_t P^{(t)} \subseteq \bigcap_t P^{(t)} R_P = \bigcap_t (P R_P)^t = (0) \). Since \(R \) is complete, Chevalley’s theorem implies that \(P^{(N)} \) is contained in arbitrarily high powers of \(m \) for large enough \(N \).

Now fix \(t \). Then \(P^t \) can have only \(P \), \(m \) as associated primes, since \(V(P) = \{P, m\} \), and so the primary decomposition tells us that \(P^t = P^{(t)} \cap J \) where \(J \) is either primary to \(m \) or else \(R \). For \(N \geq t \) we have that \(P^{(N)} \subseteq P^{(t)} \), while Chevalley’s theorem implies that \(P^{(N)} \subseteq J \) for all \(N \gg 0 \). Thus \(P^{(N)} \subseteq P^t \) for all \(N \gg 0 \).
(19.11) Lemma. Let M be a finitely generated Cohen-Macaulay module of dimension d over a Gorenstein local ring (R, m, K) of dimension n. Then $\text{Ext}_R^j(M, R) = 0$ except for $j = n - d$.

Proof. This is immediate from local duality, since $H^i_m(M) = 0$ except when $i = d$.

One can also proceed as follows: the case where $M = K$ is immediate from the basic properties of Gorenstein rings, and the case where dim $M = 0$ follows by induction on the length of M. If $d > 0$ proceed by induction on d. Pick a nonzerodivisor x in m on M, and apply the long exact sequence for $\text{Ext}^\bullet_R(_, R)$ to $0 \to M \to M/xM \to 0$. It follows from Nakayama’s lemma that whenever $\text{Ext}_R^{j+1}(M/xM, R) = 0$ then $\text{Ext}_R^j(M, R) = 0$, and the result is then immediate from the induction hypothesis. □

(19.12) Proof of Theorem (19.6). We have seen that it suffices to prove that if R is a complete local Gorenstein domain of dimension d and P is a prime such that dim $R/P = 1$, then $H^d_P(R) = 0$. But because the symbolic powers of P are cofinal with the ordinary powers, we may compute the local cohomology as $\lim_{\to} \text{Ext}^d_P(R/P^{(t)}, R)$. Because $R/P^{(t)}$ is a local ring of dimension 1 and the maximal ideal is not an associated prime of (0), $R/P^{(t)}$ is Cohen-Macaulay. It follows from the preceding proposition that $\text{Ext}_R^j(R/P^{(t)}, R)$ is zero except when $j = d - 1$. □

We have now completed the proof of Theorem (19.1) as well.

(19.13) Exercise. Let (R, m, K) be a Cohen-Macaulay local ring with canonical module ω. Let dim $R = n$. If M is a Cohen-Macaulay R-module of dimension d let $M^* = \text{Ext}_R^{n-d}(M, \omega)$.

(a) Show that \ast is a contravariant functor from Cohen-Macaulay modules of dimension d to Cohen-Macaulay modules of dimension d. Show also that if $0 \to N \to M \to Q \to 0$ is a short exact sequence of Cohen-Macaulay modules of dimension d then the sequence $0 \to Q^* \to M^* \to N^* \to 0$ is exact, while if N and M have dimension d and Q has dimension $d - 1$ then there is a short exact sequence $0 \to M^* \to N^* \to Q^* \to 0$. Show that if x is not a zerodivisor on the Cohen-Macaulay module M then $(M/xM)^* \cong M^*/xM^*$. Note that $R^* \cong \omega$ and $\omega^* \cong R$.

(b) Show that if $S \to R$ is a local homomorphism, where S is Cohen-Macaulay with canonical module ω_S, and R is module-finite over the image of S, then \ast calculated over S, when restricted to Cohen-Macaulay R-modules, is a functor isomorphic with \ast calculated over R. (Identify $\omega \cong \text{Ext}^h_S(R, \omega_S)$ where $h = \dim S - \dim R$.)
(c) Show that the calculation of \ast is compatible with completion.

(d) Show that for every Cohen-Macaulay R-module $M, M^{**} \cong M$. (One may reduce to the complete case, and then to the case where the ring is regular by mapping a regular ring onto R.)

(e) Show that $\text{Ann}_R M = \text{Ann}_R M^\ast$.

20. CANONICAL MODULES OVER NOT NECESSARILY COHEN-MACAULAY LOCAL RINGS

(20.1) Definition and discussion. Let (R, m, K) be a local ring of dimension d. We define a finitely generated R-module ω to be a canonical module for R if $\omega^\vee \cong H^d_m(R)$, where \vee is $\text{Hom}_R(_ , E)$ and $E = E_R(K)$ is an injective hull of K over R. Note that this is precisely the same definition that we gave in the case where R is Cohen-Macaulay. We sometimes write ω_R instead of ω. We keep the notations of this paragraph throughout this section.

The reader should be warned that, in this greater generality, many of the good properties of canonical modules are lost. However, enough remain that their study is worthwhile.

(20.2) Definition. If R is a local ring we shall denote by $j(R)$ the largest ideal which is a submodule of R of dimension smaller than $\text{dim } R$. (There is a maximal such ideal, and it actually contains all the others, since the sum of two submodules of dimension $< d$ also has dimension $< d$.) Then $j(R)$ is nonzero if and if some prime P of $\text{Ass } R$ is such that $\text{dim } R/P < \text{dim } R$, and then $j(R) \supseteq \text{Ann}_R P$. Thus, $j(R)$ is zero if and only if R is equidimensional and unmixed (where unmixed means that (0) has no embedded primes). Moreover, $j(R)$ consists of all elements $r \in R$ such that $\text{dim } R/\text{Ann}_R r < \text{dim } R$.

(20.3) Theorem. Let (R, m, K) be a local ring with $\text{dim } R = d$.

(a) If R is complete, then R has a canonical module, and any canonical module is isomorphic with $H^d_m(R)^\vee$.

(b) Any two canonical modules for R are (non-canonically) isomorphic.

(c) If R is a homomorphic image of a Gorenstein ring, then R has a canonical module. If $R = S/J$, where S is local, then $\text{Ext}^h_S(R, S)$ is a canonical module for R, where $h = \text{dim } S - \text{dim } R$. More generally, if $S \to R$ is local, R is module-finite over the
image of S, S is Cohen-Macaulay with canonical module ω_S, and $h = \dim S - \dim R$, then $\text{Ext}^h_S(R, \omega_S)$ is a canonical module for R. In particular, if R is a module-finite extension of a regular (or Gorenstein) local ring A, then $\text{Hom}_A(R, A)$ is a canonical module for R. (The same holds when R is module-finite over the image of A and the two have the same dimension.)

(d) A canonical module for R must be killed by $j(R)$, and is also a canonical module for $R/j(R)$, while any canonical module for $R/j(R)$ is a canonical module for R. Thus, R has a canonical module if and only if $R/j(R)$ has a canonical module.

Proof. The arguments for (a), (b), and (c) are identical with the Cohen-Macaulay case and are omitted. For part (d), note that from the short exact sequence

$$0 \rightarrow j(R) \rightarrow R \rightarrow S \rightarrow 0$$

and the long exact sequence for local cohomology we get $H^d_m(R) \cong H^d_m(R/j(R))$ (since $H^d_m(j(R)) = 0$), and $H^d_m(R/j(R)) \cong H^d_m(R/m(R))(R/j(R))$. The result now follows from the observation that, for an $(R/j(R))$-module, the dual into $E_R(K)$ is the same as the dual into $\text{Ann}_{E_R(K)}j(R) \cong E_{R/j(R)}(K)$. □

Part (d) shows that the study of canonical modules reduces at once to the case where the local ring is equidimensional and unmixed (in the sense that (0) has no embedded primes), or, equivalently, to the case where $j(R) = 0$. In (20.5) below we establish some basic facts in the case where R is a homomorphic image of a Gorenstein ring, which includes the case where R is complete. Later, we shall use our knowledge of the complete case to show that certain of these results hold in general. However, we need a preliminary result.

We recall that a finitely generated module M over a Noetherian ring R is said to have the property S_i (or to satisfy S_i, or to be S_i) if for every prime ideal P of R such that $M_P \neq 0$, depth $M_P \geq \min\{\dim M_P, i\}$.

(20.4) Lemma. Let R be a Noetherian ring and let M be a finitely generated R-module.

(a) M has property S_i if and only if for every ideal I of R such that $I(R/\text{Ann}M)$ has height h, the depth of M on I is at least $d = \min\{h, i\}$. In particular, R has property S_i if and only if the depth of R on any ideal I of height h is at least $\min\{h, i\}$.

(b) If M is S_1, then M has no embedded primes. In particular, if (R, m, K) is local and S_1, then R is unmixed. If (R, m, K) is S_2 and catenary, then it is equidimensional.

(c) If S is a ring module-finite over the image of R and M is a finitely generated S-module such that M has property S_i as an R-module, then M has property S_i as an S-module.
(d) If \((R, m, K) \to (S, n, L)\) is a flat local homomorphism and \(M\) is a finitely generated \(R\)-module, then \(S \otimes_R M\) is \(S_i\) implies that \(M\) is \(S_i\). If the fibers of the map \(R \to S\) are Cohen-Macaulay then \(S \otimes_R M\) is \(S_i\) if and only if \(M\) is \(S_i\).

In particular, if \(R\) is local and \(M\) is finitely generated, then \(\hat{M}\) is \(S_i\) implies that \(M\) is \(S_i\), and the converse holds provided that \(R\) is excellent.

Proof. (a) First, we may replace \(R\) by \(R/\text{Ann}_R M\), and so we may assume that \(M\) is faithful. Suppose that \(M\) is \(S_i\) but that the depth \(b\) of \(M\) on \(I\) is less than \(d = \min\{\text{ht} I, i\}\). Then we can choose a maximal \(M\)-sequence \(x_1, \ldots, x_b\) of length \(b < d\) in \(I\), and then \(I\) is contained in some associated prime \(Q\) of \(M/(x_1, \ldots, x_b)M\). This remains true when we localize at \(Q\). But then depth \(M_Q = b < d \leq \min\{\dim S_Q, i\}\), since \(\dim S_Q = \text{ht} Q \geq \text{ht} I\), which contradicts the definition of \(S_i\).

Now suppose that \(M\) is faithful and that the depth of \(M\) on \(I\) is at least \(\min\{\text{ht} I, i\}\) for every ideal of \(R\). Let \(P\) be a prime ideal of \(R\) of height \(h\). Then depth \(M_P \geq \text{depth}_P M \geq \min\{\text{ht} P, i\} = \min\{\dim M_P, i\}\), since \(M\) is faithful.

(b) If \(Q\) were an embedded prime then \(M_Q\) would have positive dimension and depth 0, which contradicts the \(S_1\) condition. This establishes the first statement, and, consequently, the second statement.

Now suppose that \(R\) is \(S_2\) and catenary, but not equidimensional. Let \(J\) be the intersection of the minimal primes \(P\) of \((0)\) such that \(\dim R/P = \dim R\), and let \(J'\) be the intersection of the other minimal prime of \((0)\), i.e., those minimal primes \(P\) such that \(\dim R/P < \dim R\). Suppose the \(J + J'\) is contained in a height one prime \(Q\) of \(R\). Then \(J \subseteq Q\), so that \(Q\) contains at least one minimal prime \(P\) such that \(\dim R/P = \dim R\), and, similarly, a minimal prime \(P'\) such that \(\dim R/P' < \dim R\). If we take a saturated chain from \(Q\) to \(m\) and adjoin \(P\) (respectively, \(P'\)) we see that \(\dim R/P = \dim R/Q + 1 = \dim R/P', \) a contradiction. (We are using here that \(R\) is catenary.)

Thus, it follows that \(J + J'\) has height two. Now \(JJ' \subseteq J \cap J'\) is in the nilradical. If we replace \(J, J'\) by powers \(I, I'\) we have that \(II' = 0\) while \(I + I'\) has height two. But then we can choose a regular sequence \(u + u', v + v'\) in \(I + I'\) where \(u, v \in I, u', v' \in I'\). The relation \(v(u + u') - u(v + v') = 0\) shows that \(u = r(u + u')\) for some \(r \in R\), and similarly, \(u' = r'(u + u')\) for some \(r' \in R\). Then \(u + u' = (r + r')(u + u')\). Since \(u + u'\) is not a zerodivisor in \(R\), we have that \(r + r' = 1\), and so at least one of them is a unit. But then \(u\) (if \(r\) is a unit) or \(u'\) (if \(r'\) is a unit) is a nonzerodivisor in \(R\). Since \(II' = 0\), it follows either that \(I = 0\) (\(J\) is nilpotent) or \(I' = 0\) (\(J'\) is nilpotent). Thus, either all minimal primes
containing J or all minimal primes contain J', a contradiction.

(c) We may replace S by S/Ann_SM and R by R/J, where $J = \text{Ann}_RM$ is the contraction of Ann_SM to R. Thus, we may suppose that $R \subseteq S$ and that M is faithful over both rings. Let Q be a prime ideal of S and suppose that Q lies over P in R. Then $\text{ht} P \geq \text{ht} Q$, and we have $\text{depth}_{QS} M_Q = \text{depth}_Q M_Q \geq \text{depth}_P M_P \geq \text{depth}_{P_{S_P}} M_P \geq \min \{ \dim M_P, i \} = \min \{ \dim R_P, i \} = \min \{ \text{ht} P, i \} \geq \min \{ \text{ht} Q, i \}$ and $\text{ht} Q = \dim S_Q = \dim M_Q$.

(d) First, let $I = \text{Ann}_RM$. Then $\text{Ann}_S(S \otimes_R M) = IS \cong I \otimes_R S$. Thus, there is no loss of generality in replacing R, S by R/I, S/IS, and we need only treat the case where M is faithful. Let P be a prime of R and let Q be a minimal prime of PS. Then $R_P \to S_Q$ is flat with a zero-dimensional fiber, and so $\text{depth} (S \otimes_R M)_Q = \text{depth} (S_Q \otimes_{R_P} M_P) = \text{depth} M_P$. Thus, if $S \otimes_R M$ is S_i, we have $\text{depth} M_P = \text{depth} (S \otimes_R M)_Q \geq \min \{ \dim S_Q, i \} = \min \{ \dim R_P, i \}$, as required. (Recall that M is faithful.)

Now suppose that M has property S_i and that the fibers are Cohen-Macaulay. Let Q be any prime of S and let P be its contraction to R. Then $\text{depth} (S \otimes_R M)_Q = \text{depth} (S_Q \otimes_{R_P} M_P) = \text{depth} M_P + \text{depth} S_Q/PS_Q \geq \min \{ \dim R_P, i \} + \dim S_Q/PS_Q \geq \min \{ \dim R_P + \dim S_Q/PS_Q, i + \dim S_Q/PS_Q \} \geq \min \{ \dim S_Q, i \}$.

\textbf{(20.5) Theorem.} Suppose that (R,m,K) is local and is a homomorphically image of a Gorenstein ring. Let ω be a canonical module for R.

(a) $\text{Ker} (R \to \text{Hom}_R(\omega,\omega)) = j(R)$. Thus, R is equidimensional and unmixed if and only if ω is faithful.

(b) If R is equidimensional and P is a prime ideal of R, then ω_P is a canonical module for R_P.

(c) Let x be a nonzerodivisor in R. Then there is an exact sequence

\[0 \to \omega_R \xrightarrow{x} \omega_R \to \omega_{R/xR} \]

(the last map need not be surjective), so that $\omega_{R/xR}$ injects into $\omega_{R/xR}$.

(d) ω and $\text{Hom}_R(\omega,\omega)$ are S_2. Moreover, $\text{Hom}_R(\omega,\omega)$ may be identified with a subring of the total quotient ring of $R/j(R)$, and hence, is a commutative (semilocal) ring which is a module-finite extension of $R/j(R)$. The map $R \to \text{Hom}_R(\omega,\omega)$ is an isomorphism if and only if R is S_2. Moreover, $\text{Hom}_R(\omega,\omega)$ is S_2 as a ring in its own right.

(e) If R is unmixed, equidimensional and generically Gorenstein (i.e., the localization of R at every minimal prime is Gorenstein, which holds, in particular, when R is a
domain or is reduced), then \(\omega \) is isomorphic with an ideal of \(R \) containing a nonzero-divisor. Moreover, if \(R \) is \(S_2 \), the ideal in question must be of pure height one or else the unit ideal.

Proof. We first prove (b). Since \(R \) is equidimensional, if we write it as \(S/I \) with \(S \) local Gorenstein, than all minimal primes of \(I \) have the same height, and it follows that the height of \(I \) does not change when we localize at a prime ideal of \(S \) containing \(I \). The result now follows from the fact that \(\omega \) can be calculated as an \(\Ext \) in this case and localization commutes with \(\Ext \).

To prove (a), first note that we already know that \(j(R) \) is in the kernel. Passing to \(R/j(R) \), we see that it suffices to prove that if \(R \) is unmixed and equideimensional then the map \(R \to \Hom_R(\omega, \omega) \) is injective. Let \(U \) be the multiplicative system in \(R \) consisting of all nonzerodivisors. Then we have

\[
R \to U^{-1}R \to U^{-1}\Hom_R(\omega, \omega) \cong \Hom_{U^{-1}R}(U^{-1}\omega, U^{-1}\omega)
\]

and the composite map factors

\[
R \to \Hom_R(\omega, \omega) \to U^{-1}\Hom_R(\omega, \omega).
\]

Since \(R \to U^{-1}R \) is injective, it will suffice to show that

\[
U^{-1}R \to \Hom_{U^{-1}R}(U^{-1}\omega, U^{-1}\omega)
\]

is injective. Now \(U^{-1}R \) is the localization of \(R \) at the set of minimal primes of \(R \), and is therefore an Artin semilocal ring with one maximal ideal for each minimal prime of \(R \). Thus, \(U^{-1}R \) is the product \(\prod_p R_p \) as \(p \) runs through the minimal primes of \(R \). It follows that it suffices to show that

\[
R_p \to \Hom_{R_p}(\omega_p, \omega_p)
\]

is injective for every minimal prime \(p \) of \(R \). But by part (b), \(\omega_p \) is a canonical module for the Artin (and, hence, Cohen-Macaulay) local ring \(R_p \), and we already know the result in this case.

We next prove (c). Write \(R = S/I \) with \(S \) Gorenstein local. Of course, \(\text{ht} I = \dim S - \dim R \). Then \(\dim R/xR = \dim R - 1 \), and the long exact sequence for \(\Ext \) yields the sequence displayed in the statement of (c), since \(\Ext^h_S(S/(I+xS), S) = 0 \) (the first nonvanishing \(\Ext^j(S/(I+xS), S) \) occurs at \(j = \text{depth}_{I+xS} S = \text{ht} (I+xS) = h+1 \)).
To prove (d) we must first verify that ω is S_2. The issue is unaffected by replacing R by $R/j(R)$, and so we assume that R is equidimensional and unmixed. Then ω_P is a canonical module for R_P for each P, and it suffices to show that if $\dim \omega \geq i$ with $i \in \{1,2\}$ then depth $\omega \geq i$. If $i = 1$ we note that since $\dim R \geq 1$ (ω is faithful) and R is unmixed, m contains a nonzerodivisor on R, which will be a nonzerodivisor on ω by part (c). Now suppose that $i = 2$. Then we can choose $x, y \in R$ such that x is not in any minimal prime of R and y is not in any minimal prime of x. Then x is not a zerodivisor in R, hence, not a zerodivisor on ω, and $\omega/x\omega$ embeds into a canonical module ω' for $R' = R/\langle x \rangle$. Thus, to show that x, y is a regular sequence on ω, it will suffice to show that y is not a zerodivisor on ω'. But we may think of ω' as a canonical module for $R'/j(R')$, and the image of y in $R'/j(R')$ is not a zerodivisor, which proves the result.

We next observe that if a module W over a Noetherian ring R is S_2, then so is $\text{Hom}_R(W, W)$. First note that we have an embedding $R/\text{Ann}_R W \to \text{Hom}_R(W, W)$, while $\text{Ann}_R W$ kills $\text{Hom}_R(W, W)$. It follows that $\text{Ann}_R \text{Hom}_R(W, W) = \text{Ann}_R W$, and so the modules W and $\text{Hom}(W,W)$ have the same dimension and the same support. Since localization commutes with Hom, it suffices to observe that a regular sequence of length at most 2 on W is also a regular sequence on $\text{Hom}(W,W)$. (We leave this observation as an exercise.)

Since ω is S_2, so is $\text{Hom}_R(\omega, \omega)$, and we have an injection $R/j(R) \to \text{Hom}_R(\omega, \omega)$. We replace R by $R/j(R)$ and assume that R is equidimensional and unmixed. If we now localize at the multiplicative system U of all nonzerodivisors, precisely as in the proof of part (b), this map becomes an isomorphism, since, again as in the proof of part (b), it becomes an isomorphism when we localize at any minimal prime of R. Thus $U^{-1} \text{Hom}_R(\omega, \omega)$ is isomorphic with the total quotient ring $U^{-1}R$ of R. Moreover, each element of U is a nonzerodivisor on $\text{Hom}_R(\omega, \omega)$, and so $\text{Hom}_R(\omega, \omega)$ injects into $U^{-1}R$. This shows that $\text{Hom}_R(\omega, \omega)$ is a commutative ring. It is evident that it is a module-finite extension of R and, hence, semilocal. Lemma (20.4c) shows that it is S_2 when considered as a module over itself.

It remains only to show that $R \to \text{Hom}_R(\omega, \omega)$ is an isomorphism iff R is S_2. The condition is clearly necessary, since $\text{Hom}_R(\omega, \omega)$ is S_2 as an R-module. Thus it suffices to prove that the map is an isomorphism when R is S_2. By (20.4b) we know that R is equidimensional and unmixed, so that the map is injective. We have a short exact sequence

$$0 \to R \to \text{Hom}_R(\omega, \omega) \to C \to 0,$$

Therefore, $\text{Hom}_R(\omega, \omega)\rightarrow C$ is an isomorphism, and the result follows.
where C is simply the cokernel of the map. If we localize at any height one prime then R becomes Cohen-Macaulay and we know that the map becomes an isomorphism. Thus, $C_P = 0$ for any height one prime P of R, which implies that the annihilator J of C has height at least two. It follows that the depth of that annihilator is also at least two, since R is S_2. This implies that $\text{Ext}^1_R(C, R) = 0$. Applying $\text{Hom}_R(C, _)$ to the short exact sequence therefore yields an exact sequence

$$0 \to \text{Hom}_R(C, R) \to \text{Hom}_R(C, \text{Hom}_R(\omega, \omega)) \to \text{Hom}_R(C, C) \to 0$$

and it follows that the short exact sequence

$$0 \to R \to \text{Hom}_R(\omega, \omega) \to C \to 0$$

splits. Thus, $\text{Hom}_R(\omega, \omega) \cong R \oplus C$. But then $\text{Ass} \text{Hom}_R(\omega, \omega)$ contains $\text{Ass} C$, and so, if $C \neq 0$, it contains primes P such that $\dim R/P < \dim R$, each of which will be an embedded prime of $\text{Hom}_R(\omega, \omega)$ (for $\text{Ass} \text{Hom}_R(\omega, \omega) \supseteq \text{Ass} R$). But then $\text{Hom}_R(\omega, \omega)$ cannot even be S_1, a contradiction. Thus, we must have that $C = 0$.

Finally, the proof of part (e) is identical with the Cohen-Macaulay case. □

We next observe that, even without the hypothesis that R be a homomorphic image of a Gorenstein ring, when R has a canonical module one has a form of local duality, but only for the top dimension.

20.6 Proposition. Let (R, m, K) be local with canonical module ω and suppose that $\dim R = d$. Then for every finitely generated R-module M, $H^d_m(M) \cong \text{Hom}_R(M, \omega)^\vee$ where \vee indicates $\text{Hom}_R(_, E)$ and $E = E_R(K)$ is an injective hull of K over R.

Proof. When M is a finitely generated R-module we have a map

$$H^d_m(M) \cong M \otimes_R H^d_m(R) \cong M \otimes \omega^\vee \to \text{Hom}_R(M, \omega)^\vee$$

as functors of M. When M is, in addition, free, this map is an isomorphism. (For any three R-modules M, ω, E there is a map

$$M \otimes \text{Hom}_R(\omega, E) \to \text{Hom}_R(\text{Hom}_R(M, \omega), E)$$

that sends $m \otimes F$ to the map whose value on $g \in \text{Hom}_R(M, \omega)$ is $f(g(m)))$. This is readily checked to be an isomorphism when $M \cong R$ and, hence, when M is finitely generated.
and free (or projective).) An arbitrary finitely generated R-module M has a finite free presentation $G \to F \to M \to 0$. This yields a commutative diagram:

$$
\begin{array}{cccccc}
\Hom_R(G, \omega) & \longrightarrow & \Hom_R(F, \omega) & \longrightarrow & \Hom_R(M, \omega) & \longrightarrow & 0 \\
\uparrow \cong & & \uparrow \cong & & \uparrow & & \\
H^d_m(G) & \longrightarrow & H^d_m(F) & \longrightarrow & H^d_m(M) & \longrightarrow & 0
\end{array}
$$

The top row is exact because of the left exactness of \Hom_R and the exactness of \lor, while the bottom row is exact from the long exact sequence for local cohomology and the fact that H^d_{m+1} vanishes. The leftmost two vertical arrows are isomorphisms by the remarks above, and, hence, so is the next vertical map, by the five lemma (or the fact that isomorphic maps have isomorphic cokernels). □

Corollary. Let (R, m, K) be local with canonical module ω, let (S, n, L) be local, let $R \to S$ be a local homorphism, and suppose that $\dim R = \dim S$ and that S is module-finite over the image of R. Then $\Hom_R(S, \omega)$ is a canonical module for S. (This applies both when S is a module-finite extension of R and when $S \cong R/I$ where I is contained in a minimal prime p of R such that $\dim R = \dim R/p$.)

Proof. Let $d = \dim R = \dim S$. Then mS is n-primary, so that $H^d_n(S) \cong H^d_{mS}(S) \cong H^d_m(S) \cong \Hom_R(\Hom_R(S, \omega), E_R(K)) \cong \Hom_S(\Hom_R(S, \omega), E_S(L))$. □

We next observe that much of (20.5) is valid without the assumption that R be a homomorphic image of a Gorenstein ring. (However, the numbering does not correspond with that in (20.5), and some statements are new.) See also (20.10) and (20.11) below.

Theorem. Let (R, m, K) be a local ring with canonical module ω.

(a) The kernel of the map $R \to \Hom_R(\omega, \omega)$ is $j(R)$. Thus, ω is faithful if and only if R is equidimensional and unmixed.

(b) The module ω and its completion are both S_2. Moreover, $\Hom_R(\omega, \omega)$ is a commutative semilocal ring module-finite over the image of R and it is S_2 both as an R-module and as a ring in its own right. It may be identified with a subring of the total quotient ring of $R/j(R)$. Moreover, its m-adic completion is S_2.

(c) For every prime P of R such that $\dim R/P = \dim R$, the ring $(R/P)^\lor \cong \hat{R}/P\hat{R}$ is equidimensional and unmixed. If $j(R) = (0)$ then $j(\hat{R}) = (0)$.

(d) $R \to \Hom_R(\omega, \omega)$ is an isomorphism if and only if R is S_2 and equidimensional (the latter condition follows from S_2 if R is catenary), and also if \hat{R} is S_2. Thus, if R has
a canonical module and R is equidimensional and S_2, then \hat{R} is S_2.

Proof. (a) Suppose that $I = \text{Ker } (R \to \text{Hom}_R(\omega, \omega))$, so that the sequence

$$0 \to I \to R \to \text{Hom}_R(\omega, \omega)$$

is exact. Then $j(R) \subseteq I$ and the issue is whether $\dim I < \dim R$ when I is considered as an R-module. But both the exactness of the sequence and the dimension of I as an R-module are unaffected when we complete. Thus, it suffices to prove the result when R is complete.

But then R is a homomorphic image of a Gorenstein ring, and we know the result in that case.

(b) We know that $\hat{\omega}$ is a canonical module for \hat{R}, and when the ring is a homomorphic image of a Gorenstein ring, so that $\hat{\omega}$ is S_2. It follows from (20.4d) that ω is S_2. Similarly, $\text{Hom}_R(\omega, \omega)^\vee \cong \text{Hom}_{\hat{R}}(\hat{\omega}, \hat{\omega})$ is S_2 and is a commutative semilocal ring (module-finite over R). The ring $\text{Hom}_R(\omega, \omega)$, which is clearly module-finite over R (and, hence, semilocal also), is a subring, and, consequently, is commutative. By (20.4d) it is S_2 as an R-module and by (20.4c) it is S_2 as a module over itself, i.e., as a ring.

It remains only to show that $\text{Hom}_R(\omega, \omega)$ is a subring of the total quotient ring of $R/j(R)$. We may replace R by $R/j(R)$ and so assume that $j(R) = 0$. By part (a), $0 \to R \to \text{Hom}_R(\omega, \omega)$ is then exact, and this proves the assertion in (c) that if $j(R) = 0$ then $j(\hat{R}) = 0$. We know that $\text{Hom}_{\hat{R}}(\hat{\omega}, \hat{\omega})$ is a subring of the total quotient ring of \hat{R}.

Let $v \in \text{Hom}_R(\omega, \omega)$ be given. Let $I = \{ r \in R : rv \in R \}$. Then there are exact sequences $0 \to R \to R + Rv \to R/I \to 0$ and $0 \to R + Rv \to \text{Hom}_R(\omega, \omega)$. Here, if id_{ω} denotes the identity map on ω, we have identified $R\text{id}_{\omega}$ with R. These sequences remain exact if we apply $\hat{R} \otimes_R -$ and, from this we see that the ideal of elements of \hat{R} multiplying v into \hat{R} (when v is viewed as an element of $\text{Hom}_{\hat{R}}(\hat{\omega}, \hat{\omega})$) is $I\hat{R}$. Since $\text{Hom}_{\hat{R}}(\hat{\omega}, \hat{\omega})$ is contained in the total quotient ring of \hat{R}, the ideal $I\hat{R}$ must contain a nonzerodivisor. But depth $I\hat{R} = \text{depth } I\hat{R}$, and so I must contain a nonzerodivisor. Thus, every nonzerodivisor of R is a nonzerodivisor on $\text{Hom}_R(\omega, \omega)$, and every element of $\text{Hom}_R(\omega, \omega)$ is multiplied into R by a nonzerodivisor. This enables us to identify $\text{Hom}_R(\omega, \omega)$ with a subring of the total quotient ring of R.

(c) We established the second statement of part (c) in the course of proving (b). Now, $\dim R/P = \dim R$ if and only if P is a minimal prime of $j(R)$. Thus, we have an injection $R/P \to S$, where $S = R/j(R)$. Then we also have an injection $\hat{R}/P\hat{R} \to \hat{S}$ (this map arises by applying $\hat{R} \otimes_R -$), and so $\text{Ass } (\hat{R}/P\hat{R}) \subseteq \text{Ass } \hat{S}$. Since we have already seen that \hat{S} is equidimensional and unmixed, the result follows.
(d) From (b) we see that $R \to \text{Hom}_R(\omega, \omega)$ cannot be an isomorphism unless R is S_2, since $\text{Hom}_R(\omega, \omega)$ is S_2 as an R-module, and we already know that the injectivity of the map implies that R is equidimensional. Now suppose that R is equidimensional and S_2 with canonical module ω. Since S_2 implies unmixed, $j(R) = 0$, and so we have an exact sequence

$$0 \to R \to \text{Hom}_R(\omega, \omega) \to C \to 0$$

The rest of the proof is identical with the argument given for (20.5d) to show that $C = 0$.

Since the question of whether $R \to \text{Hom}_R(\omega, \omega)$ is an isomorphism is unaffected by completion, and since complete rings are catenary, we have that $R \to \text{Hom}_R(\omega, \omega)$ is an isomorphism if and only if \hat{R} is S_2. □

(20.9) Corollary. If (R, m, K) is an equidimensional S_2 local ring of dimension d with canonical module ω, then $H^d_m(\omega)$ is isomorphic with $E = E_R(K)$, an injective hull of the residue field.

Proof. By (20.6) we have $H^d_m(\omega) \cong \text{Hom}_R(\omega, \omega)^\vee$. By (20.8d) $\text{Hom}_R(\omega, \omega) \cong R$ here, and $R^\vee \cong E$. □

We now state a result whose proof will occupy as for quite a while (it is completed in the next section).

(20.10) Theorem. If R is equidimensional, then for every prime P of R, ω_P is a canonical module for R_P.

Once we know that the formation of the canonical module commutes with localization, we obtain the result below by the same argument that we gave in the Cohen-Macaulay case:

(20.11) Corollary. If R is equidimensional, unmixed, and generically Gorenstein then ω is isomorphic with an ideal of R containing a nonzerodivisor. Moreover, if R is S_2, this ideal must be of pure height one or else the unit ideal. □

As a step toward proving (20.10), we observe:

(20.12) Lemma. Let $(R, m, K) \to (S, n, L)$ be a flat local homomorphism such that S/mS is zero-dimensional and Gorenstein.

(a) Then $E_S(L) \cong S \otimes_R E_R(K)$.

(b) Moreover, if R has a canonical module ω_R, then $S \otimes_R \omega_R$ is a canonical module for S.

Proof. (a) View $E = E_R(K)$ as the increasing union of its submodules $E_t = \text{Ann}_R m^t \cong E_{R/m^t}(K)$. Then $S \otimes_R E_R(K)$ is the increasing union of the modules $S \otimes_R (R/m^t)$ over S/m^t for all t. In this way we reduce to considering the case where R/m^t replaces R, and so we may assume that R is Artin. Now, the socle of $S \otimes_R E$ is contained in $\text{Ann}_{S \otimes_R} m \cong S \otimes_R (\text{Ann}_R m)$ (since S is flat over R) $\cong S \otimes_R K$ (since E is an essential extension of K) $\cong S/mS$, and since the socle of S/mS is $\cong L$, we see that the socle of $S \otimes_R E$ is L, so that $S \otimes_R E$ is an essential extension of L. Thus, $S \otimes_R E$ can be enlarged to an injective hull E' of L over S. To complete the argument, it will suffice to see that $S \otimes_R E$ and E' have the same length. Since E and R have the same length λ, each has a filtration with λ factors, all isomorphic with K. Applying $S \otimes_{R_\lambda}$, we see that both $S \otimes_R R \cong S$ and $S \otimes_R E$ have filtrations with λ factors, each isomorphic with $S \otimes_R K \cong S/mS$. Thus, $S \otimes_R E$ and S both have length $\lambda L(S/mS)$, and since S and E' have the same length, we are done.

(b) The dual of $S \otimes_R \omega_R$ into the injective hull of the residue field, by part (a), will be $\text{Hom}_S(S \otimes_R \omega_R, S \otimes_R E_R(K))$. Since ω_R is finitely presented over R and S is R-flat, this is the same as $S \otimes_R \text{Hom}_R(\omega_R, E_R(K)) \cong S \otimes_R H^d_{m}(R)$ (where $d = \dim R = \dim S$ here) $\cong H^d_{mS}(S) \cong H^d_{n}(S)$, since $\text{Rad} mS = n$. □

As a further tool, we shall need to know that if $R \to S$ is a flat local homomorphism of local rings and M, N are finitely generated modules such that $S \otimes_R M \cong S \otimes_R N$, then $M \cong N$. We have already established this when S is the completion of R. In order to prove the more general case, we need to know that the Krull-Schmidt theorem is valid for finitely generated modules over a complete local ring. We first prove:

(20.13) Lemma. Suppose that M is a finitely generated module over a complete local ring (R, m, K).

(a) Let $f : M \to M$ be an R-linear endomorphism.

1. Then M is the direct sum of two submodules V and W, stable under the action of f, such that $f|_V : V \to V$ is an automorphism of V and f has a power f^N such that $f^N(W) \subseteq mW$ (this implies that for all t if $n \geq Nt$ then $f^n(W) \subseteq m^t W$). This decomposition is unique.

2. If M is indecomposable (not the direct sum of two nonzero modules) then every endomorphism of M is either an automorphism or else has the property that for all $t \in \mathbb{N}$, $f^n(M) \subseteq m^t M$ for all sufficiently large n.

(b) If M is indecomposable then the endomorphisms of M that are not units form a two-
sided ideal in $\text{End}_R(M)$.

Proof. (a) The statement in (a2) is immediate from (a1), since the indecomposability of M implies that one of the two modules V, W described in (a1) is zero. Therefore, we focus on (a1).

For each t, let $M_t = M/m^t M$. Then f induces an endomorphism f_t of M_t. Let $V_t = \bigcap_n f_t^n (M_t) \subseteq M_t$, which will be the same as $f_t^n (M_t)$ for all $n \geq N(t)$, some fixed integer, since

$$M_t \supseteq f_t(M_t) \supseteq \cdots \supseteq f_t^n(M_t) \supseteq \cdots$$

is a non-increasing sequence of submodules and M_t has DCC. Let $W_t = \bigcap_t \ker f_t^n$. Then $W_t = \ker f_t^n$ for all $n \geq N'(t)$, since these kernels are nondecreasing and M_t has ACC as well. It is clear that V_t, W_t are disjoint. We claim first that $M_t = V_t \oplus W_t$ for all t. For $g = f_t|_{V_t} : V_t \to V_t$ is clearly surjective, and it follows that given $m \in M$ and $n \geq N(t)$ then $f_t^n(m) \in V_t$ and we can choose $v \in V_t$ such that $g^n(v) = f_t^n(m)$, which means that $f_t^n(v) = f_t^n(m)$. But then $f_t^n(m - v) = 0$, and so $m = v + (m - v)$ and $w = m - v \in W_t$.

It is then clear that the surjections $M_{t+1} \to M_t$ take W_{t+1} onto W_t and V_{t+1} onto V_t (since f_t will give an automorphism on the image of V_t and will be nilpotent on the image of the W_{t+1}). Thus, if we view M as $\varprojlim_t M_t$, these direct sum decompositions of the M_t induce a direct sum decomposition of M, $M = V \oplus W$. It is clear that that V, W are stable under the action of f, since this is true modulo m_t for all t. Moreover, it is also clear that $f_t|_{V_t}$ is an automorphism and that for all t and all $w \in W$, $f_t^n(w) \in m^t W$ for all sufficiently large n.

To establish uniqueness, note that it suffices to show that the image of V, W modulo m^t are determined for all t. But it is clear that if $M_t = V' \oplus W'$ where f_t is an automorphism of V' and is nilpotent on W', then $V' \subseteq \bigcap_n \text{Im} f_t^n = V_t$ and $W' = W_t$.

(b) Suppose that f, g are elements of $\text{End}_R(M)$ and that at least one of them is not an automorphism. We claim that fg (the composition) is not an automorphism. To see this, first note that we can assume that g is not an automorphism: otherwise $f = (fg)g^{-1}$, and all three are automorphisms. We use the subscript t on endomorphisms of M to indicate the induced endomorphisms on M_t. We know that g induces a nilpotent endomorphism g_t of M_t, $t \geq 1$. But then g_t has a nonzero kernel in M_t, and it follows that $(fg)_t = f_t g_t$ also a nonzero kernel in M_t. This establishes closure under multiplication by elements of the ring.

Finally, we must show that if f, g are not automorphisms, then $f + g$ is also not an
automorphism. Suppose that \(h = f + g \) is an automorphism of \(M \). Then

\[
\text{id}_M = h^{-1}(f + g) = h^{-1}f + h^{-1}g
\]

where \(h^{-1}f \) and \(h^{-1}g \) are not automorphisms. Therefore, it suffices to show that if \(\text{id}_M = f + g \) and \(f \) is not an automorphism then \(g \) is an automorphism (replacing \(f, g \) by \(h^{-1}f, h^{-1}g \), respectively). To show that \(g \) is an automorphism, it suffices to prove this modulo \(m^t \) for all \(t \) (or even modulo \(m \), by Nakayama’s lemma). But modulo \(m^t \), \(f_t \) is nilpotent, and it follows that \(\text{id}_{M_t} - f_t \) is an automorphism of \(M_t \). □

We shall use this lemma to prove the Krull-Schmidt theorem for complete local rings. We first note:

Lemma. Let \(f : M \to N \) and \(g : N \to M \) be \(R \)-linear maps of \(R \)-modules \(M, N \) such that \(gf \) is an automorphism of \(M \) and \(M \neq 0 \). If \(N \) is indecomposable, then \(f, g \) are both automorphisms.

Proof. Let \(gf = \alpha \). Then \(h = \alpha^{-1}g \) splits \(f \), which shows that \(f \) is one-to-one and that \(f(M) \) is a direct summand of \(N \). Since \(N \) is indecomposable, \(f(M) \) must be all of \(N \), which shows that \(f \) is an isomorphism. But then \(g = \alpha f^{-1} \) is an isomorphism as well. □

We can now establish:

Theorem (Krull-Schmidt theorem for complete local rings). Let \(M \) be a finitely generated nonzero module over a complete local ring \((R, m, K) \). Then \(M \) can be written as a finite direct sum of nonzero indecomposable modules \(M \cong M_1 \oplus \cdots \oplus M_n \), and this decomposition is unique in the sense that if \(M \cong M'_1 \oplus \cdots \oplus M'_r \) is any other such decomposition then \(r = n \) and there is a permutation \(\sigma \) of \(\{1, \ldots, n\} \) such that \(M_i \cong M'_{\sigma(i)} \) for \(1 \leq i \leq n \).

Proof. The existence of such a decomposition is clear: if \(M \) is not indecomposable, write it as a direct sum, and then continue this process with the summands. One cannot continue the process indefinitely, since it also gives a decomposition of the finite-dimensional vector space \(M/mM \), and so one eventually obtains a decomposition of \(M \) as a direct sum of at most \(\dim_K M/mM \) indecomposable modules. The hard part is to prove uniqueness. Hence, suppose we are given two such decompositions as indicated in the hypothesis. We use induction on \(n \). The case \(n = 1 \) is trivial.

Let \(\iota_s \) be the inclusion map of \(M_s \) into \(M \), let \(\pi_s \) be the projection map from \(M \) to \(M_s \) (so that \(\pi_s \iota_s = \text{id}_{M_s} \)), let \(\iota'_t \) be the inclusion map of \(M'_t \) into \(M \), and let \(\pi'_t \)
be the projection map from M to M'. Then $\sum_i \iota'_i \pi'_i$ is the identity map on M, and so $\pi_1(\sum_i \iota'_i \pi'_i) \iota_1 = \pi_1 \iota_1 = \text{id}_{M_1}$. Since the sum of the maps $\pi_1 \iota'_i \pi'_i \iota_1$ as t varies is an automorphism of the indecomposable module M_1, it follows from Lemma (20.13b) that at least one of these maps is an automorphism. By renumbering the M'_i we may assume that $t = 1$. Thus we may assume that $\pi_1 \iota'_1 \pi'_1 \iota_1$ is an automorphism α of M_1. Since M'_1 is indecomposable, it follows from (20.14) that the map $\pi'_1 \iota_1$ is an isomorphism of M_1 with M'_1 and that $\pi_1 \iota'_1$ is an isomorphism of M'_1 with M_1. We next claim that $\iota'_1(M'_1)$ is disjoint from $N = \iota_2(M_2) + \cdots + \iota_n(M_n)$ and that $\iota'_1(M'_1) + N = M$. One point is that $\pi_1 \iota_j$ vanishes for $j \neq 1$ and so π_1 kills N, while the fact that $\pi_1 \iota'_1$ is an isomorphism shows that π_1 is injective on $\iota'_1(M'_1)$. To show that $\iota'_1(M'_1) + N$ is all of M, it suffices to show that it contains $v_1(M_1)$. But given $v \in M_1$, we know that $\pi_1 \iota'_1(\pi'_1 \iota_1(\alpha^{-1}(v))) = \alpha \alpha^{-1}(v) = v$, and so $\iota'_1(w)$, where $w = \pi'_1 \iota_1 \alpha^{-1}(v) \in M'_1$ has first entry $\iota'_1(v)$ in its unique representation as an element of $\iota_1(M_1) + \iota_2(M_2) + \cdots + \iota_n(M_n) = \iota_1(M_1) + N$. Thus, M has an internal direct sum decomposition $M = \iota_1(M'_1) \oplus N$ as well as the internal direct decomposition $M = \iota_1(M') \oplus N'$, where $N' = \iota_2(M_2) + \cdots + \iota_n(M_n)$. But then $N \cong M/\iota_1(M'_1) \cong N'$, and the result now follows by the induction hypothesis applied to the two decompositions $\bigoplus_{i=2}^n M_i \cong N \cong N' \cong \bigoplus_{i=2}^n M'_i$, since we already know that $M_1 \cong M'_1$.

We leave the proof of the following easy corollary as an exercise.

Corollary (20.16) Let R be complete, local and M, N, Q finitely generated R-modules.

(a) If $M \oplus Q \cong N \oplus Q$ then $M \cong N$.
(b) If $M \oplus h \cong N \oplus h$ then $M \cong N$.

We next observe:

Lemma (20.17) Let (R, m, K) be a local ring.

(a) Suppose that (S, n, L) is also a local ring, that $R \to S$ is a local homomorphism, and that W is a finitely generated S-module. Then W is flat over R if and only if $\text{Tor}^R_1(K, W) = 0$.
(b) Let L be a finite algebraic extension of K. Then there is a local ring (R', m', K') such that R' is a module-finite and free extension of R, $m' = mR'$, and $K' \cong L$ over K.

Proof. For part (a), “only if” is clear: we need to prove “if.” Since any injective map of R-modules is a directed union of injective maps of finitely generated R-modules, it suffices to show that if $M \subseteq N$, with M, N finitely generated, then $M \otimes_R W \to N \otimes_R W$ is injective. If not, let $z \neq 0$ be an element of the kernel. Since $M \otimes_R W$ is a finitely
generated S-module, it is n-adically separated and, hence, m-adically separated. Choose an integer $s > 0$ such that $z \notin m^s(M \otimes_R W)$. By the Artin-Rees lemma one can choose $t > 0$ such that $M_0 = m^t N \cap M \subseteq m^s M$. Consider the injection of finite length modules $M/M_0 \subseteq N/m^t N$. Then the image y of z in $(M/M_0) \otimes_R W$ is not zero, since this module maps onto $(M/m^t M) \otimes_R W \cong (M \otimes_R W)/m^s(m \otimes_R W)$, but y maps to 0 in $N/m^t N \otimes_R W$. We now have an example where injectivity fails to be preserved for an injection of modules of finite length over R. However, since $\text{Tor}^1_R(K, W) = 0$, it follows by induction on the length of D (using the long exact sequence for Tor) that $\text{Tor}^1_R(D, W) = 0$ for every finite length R-module D. Thus, all maximal ideals lie over m. But killing mR' yields $K[x]/(f) \cong K[\theta] = L$.

We note that generalization of (20.17a) may be found in [Mat], Ch. 8, §20, e.g., Theorem 49 (local criteria of flatness).

We can now prove:

(20.18) Theorem. Let $(R, m, K) \to (S, n, L)$ be a (faithfully) flat local homomorphism of local rings. Let M, N be finitely generated R-modules such that $S \otimes_R M \cong S \otimes_R N$ as S-modules. Then $M \cong N$ as R-modules.

Proof. First note that $\hat{R} \to \hat{S}$ is still flat. For $\text{Tor}^1_{\hat{R}}(K, \hat{S}) = 0$, and so the result follows from (20.17a). Clearly, $\hat{S} \otimes_R N \cong \hat{S} \otimes_{\hat{R}} (\hat{R} \otimes_R N)$ as well. Thus, if we know the result when R, S are both complete, we get that $\hat{R} \otimes_R M \cong \hat{R} \otimes_R N$, and we already know that this implies that $M \cong N$. Thus, we can assume without loss of generality that R and S are both complete.

It will suffice if we can find maps $\alpha : M \to N$ and $\beta : N \to M$ each of which is surjective, as in the case when $S = \hat{R}$. Let V, W be the K-vector spaces $K \otimes_R M$, $K \otimes_R N$, respectively. Note that we have

$$L \otimes_K V \cong L \otimes_S (S \otimes_R M) \cong L \otimes_S (S \otimes_R N) \cong L \otimes_K W,$$
and so V, W must have the same dimension as vector spaces over K: call it d. We have a map $\text{Hom}_R(M, N) \to \text{Hom}_K(V, W)$ that sends α to $\text{id}_K \otimes \alpha$. The image is a K-vector subspace T of $\text{Hom}_K(V, W)$. Because S is R-flat, we have that

$$\text{Hom}_S(S \otimes_R M, S \otimes_R N) \cong S \otimes_R \text{Hom}_R(M, N),$$

and it follows that the image of $\text{Hom}_S(S \otimes_R M, S \otimes_R N)$ in $\text{Hom}_L(L \otimes_K V, L \otimes_K W) \cong L \otimes_K \text{Hom}_K(V, W)$ is simply $L \otimes_K T$. We know that $L \otimes_K T$ contains maps of rank d. If we can conclude that T itself contains maps of rank d we are done: such a map will give a surjection of M onto N, by Nakayama’s lemma, and the result will follow by repeating the reasoning with the roles of M and N interchanged.

There is no problem if K is infinite. Choose bases for V, W and choose a basis t_1, \ldots, t_s for T. Then each t_i has a matrix τ_i with respect to the chosen bases. Let y_1, \ldots, y_s be variables and consider the polynomial $D(y_1, \ldots, y_s) = \det(y_1 \tau_1 + \cdots + y_s \tau_s)$ in $K[y_1, \ldots, y_s]$. Since $L \otimes_K T$ contains maps of rank d, we can choose values for the y’s in L such that this polynomial does not vanish. Thus, it is not identically zero. But then, if K is infinite, we can choose values for the y’s in K such that D does not vanish, and these will give an element of T that has rank d.

We now consider the case where K is finite. We can choose values for the y’s in the algebraic closure of K such that D does not vanish. These will actually lie in some finite algebraic extension K' of K. We also consider the corresponding set-up with the roles of M and N interchanged. By choosing the finite extension K' of K sufficiently large, we may guarantee that there are maps of rank d both in

$$K' \otimes_K T \subseteq \text{Hom}_{K'}(K' \otimes V, K' \otimes W)$$

and in $K' \otimes_K U$, where U is the image of $\text{Hom}_R(N, M)$ in $\text{Hom}_K(W, V)$. Choose R' as in Lemma (20.17b) so that its residue class field is K'. Then each of $R' \otimes_R M$ and $R' \otimes_R N$ can be mapped onto the other as R'-modules, and it follows that they are isomorphic as R'-modules.

But R' is R-free: say $R' \cong R^h$. Then $R' \otimes_R M \cong R' \otimes_R N$ as R-modules, and it follows that $M^\oplus h \cong N^\oplus h$ as R-modules. Since R is complete, the Krull-Schmidt theorem holds, and we obtain at last that $M \cong N$ over R. □

(20.19) Lemma. Let (R, m, K) be equidimensional and S_k with canonical module ω.
(a) For every prime ideal P of R, and minimal prime Q of P, $\hat{R}_Q/P\hat{R}_Q$ is a (zero-dimensional) Gorenstein ring. (Recall that from (20.8c) we know that if P is a minimal prime of R then $\hat{R}/P\hat{R}$ is equidimensional and unmixed. Thus, $\hat{R}/P\hat{R}$ is equidimensional, unmixed, and generically Gorenstein.)

(b) For any prime ideal P of R, ω_P is a canonical module for R_P.

Proof. (a) The hypotheses imply that $R \to \text{Hom}_R(\omega, \omega)$ is an isomorphism, and this is preserved by completion. It follows that \hat{R} is equidimensional with canonical module $\hat{\omega}$, and so $\hat{\omega}_Q$ is a canonical module for $B = \hat{R}_Q$ (since \hat{R} is a homomorphic image of a Gorenstein ring). Note that $\hat{\omega}_Q \cong B \otimes_R \omega$. Our hypotheses imply that \hat{R} and, hence, B is S_2. But then, by (20.9), the injective hull of the residue field L of B is simply $H^d_{QB}(B \otimes_R \omega)$, where $d = \dim B = \text{ht } Q = \dim R_P = \text{ht } P$. Since Q is a minimal prime of P, Rad $PB = QB$, and we have that $H^d_P(B \otimes_R \omega)$ is an injective hull of the residue field. But this is $B \otimes_R H^d_P(\omega)$ and so this module is an essential extension of L. But $H^d_P(\omega)$ is a nonzero module over R_P in which every element is killed by a power of P, and so contains a submodule $W \cong R_P/PR_P$. But then $B \otimes_{R_P} W \subseteq B \otimes_{R_P} H^d_P(\omega_P)$, and since the latter is an essential extension of L we have that $B \otimes_{R_P} (R_P/PR_P) \cong B/PB$ is an essential extension of L as well. But this shows that this zero-dimensional ring with residue field L is Gorenstein.

(b) Let Q and B be as in part (a). Since B is flat over $A = R_P$ with Gorenstein closed fiber, we know that \hat{B} is flat over \hat{A} with Gorenstein closed fiber. Let ω_1 denote a canonical module for \hat{A}. By (20.12b), $\hat{B} \otimes_{\hat{A}} \omega_1$ is a canonical module for \hat{B}. On the other hand, we have seen that $B \otimes_R \omega$ is a canonical module for B, and it follows that its completion

$$\hat{B} \otimes_R \omega \cong \hat{B} \otimes_{R_P} \omega_P \cong \hat{B} \otimes_{\hat{A}} (\omega_P)$$

is a canonical module for \hat{B}. Thus, $\hat{B} \otimes_{\hat{A}} (\omega_P) \cong \hat{B} \otimes_{\hat{A}} \omega_1$. We can now conclude from Theorem (20.18) that $(\omega_P) \cong \omega_1$ is a canonical module for \hat{A}, and it follows that ω_P is a canonical module for $A = R_P$, as claimed. □

We are still working toward a proof of (20.10). The following two lemmas will help:

Lemma. Let R be an equidimensional local ring and let P be any prime ideal of R. Then $j(R)_P \subseteq R_P$ is $j(R_P)$.

Proof. If $x \in j(R)$ then its annihilator I is not contained in any minimal prime of R, and so it is annihilated by an element y not in any minimal prime of R. But then $y/1$ is not
in any minimal prime of R_P (these correspond to the minimal primes of R contained in P), and so $x/1 \in j(R_P)$. Thus, $j(R)_P \subseteq j(R_P)$. But $R_P/j(R)_P \cong (R/j(R))_P$ is clearly unmixed and equidimensional, which implies that $j(R)_P$ is all of $j(R_P)$. □

20.21 Lemma. Suppose that (R, m, K) is local with $j(R) = (0)$ and let ω be a canonical module for R. Let $S = \text{Hom}_R(\omega, \omega)$, which we recall is a commutative (semilocal) module-finite extension of R. Let m_1, \ldots, m_s denote the maximal ideals of S. Note that ω is an S-module, precisely because $S = \text{Hom}_R(\omega, \omega)$. Then:

(a) Every maximal ideal of S has height equal to $\dim R$.

(b) When R is complete, so that S is product of local rings S_i, one for every maximal ideal m_i of S, and ω is, correspondingly, a product of modules ω_i over the various S_i, then ω_i is the canonical module for S_i for every i.

(c) The module ω is a canonical module for S in the sense that ω_Q is a canonical module for S_Q for every prime ideal Q of S.

Proof. (a) All issues are unaffected by completion. Thus, we may assume that R (and S) are complete. The maximal ideal m of R is in the Jacobson radical of S, and so all maximal ideals m_i of S lie over m. Now, the kernel \mathfrak{A}_i of the map $R \to S_{m_i} = S_i$ for a fixed i will be the annihilator, in R, of some element $u \in S - m_i$. Now u can be multiplied into R by a nonzerodivisor in R, because S is contained in the total quotient ring of R. Thus, the kernel is contained in the annihilator of a nonzero element of R, and is consequently contained in an associated prime of R. Since $j(R) = (0)$, all associated primes are minimal, and killing them does not lower the dimension of R. Thus, we have $R/\mathfrak{A}_i \subseteq S_i$ and $\dim R/\mathfrak{A}_i = \dim R$. Since the rings S_i are also homomorphic images of S, each is a module-finite extension of the image R/\mathfrak{A}_i of R. But then $\dim S_i = \dim R/\mathfrak{A}_i = \dim R$.

(b) Since each S_i is module-finite over R and of the same dimension, we can calculate the canonical module for S_i as $\text{Hom}_S(S_i, \omega)$, i.e., that each R-linear map $h : S_i \to \omega$ is actually S-linear. To see this, let $s \in S$ be given. Since S is contained in the total quotient ring of R, we can choose a nonzerodivisor $r \in R$ such that $rs \in R$. Then, for $u \in S_i$, we have $(rs)h(u) = h(rsu)$ (by R-linearity) $= rh(su)$ (by R-linearity), and since r is not a zerodivisor in R, it is also not a zerodivisor on ω. It follows that $sh(u) = h(su)$, which shows that h is S-linear, as claimed.

Now, $\text{Hom}_S(S_i, \omega) \cong \prod_j \text{Hom}_{S_j}((S_j)_{i_j}, \omega_j)$, where $(W)_j$ denotes the S_j-component of the S-module W. Thus, $(S_i)_{j_i} = 0$ if $j_i \neq i$ and is $\cong S_i$ if $j_i = i$. The product above therefore reduces to $\text{Hom}_{S_i}(S_i, \omega_i) \cong \omega_i$, as claimed.
(c) If Q is maximal, we want to show that ω_Q is a canonical module for S_Q. Since the issue is unaffected by completion at the maximal ideal of S_Q, this follows from (b). (For any finitely generated module ω over a semilocal ring S with maximal ideals m_i, $\hat{\omega} \cong \prod_i (\omega_{m_i})^\wedge$, where the completion on the left is with respect to the Jacobson radical of S and the completion in the ith term on the right is with respect to the $m_iR_{m_i}$-adic topology on ω_{m_i}. Note that the m-adic completion of S is the same as its completion with respect to its Jacobson radical.) Now suppose Q is any prime. Then it is contained in some maximal ideal m. Since ω_m is a canonical module for S_m and S_m is S_2, it follows that ω_P is a canonical module for S_P. □

Bibliography

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MICHIGAN
ANN ARBOR, MI 48109–1043 USA
E-MAIL:
hochster@umich.edu