Examples of integral closure of ideals. Note that whenever \(r \in R \) and \(I \subseteq R \) is an ideal such that \(r^n = i_n \in I^n \), we have that \(r \in \mathfrak{I} \). The point is that \(r \) is a root of \(z^n - i_n = 0 \), and this polynomial is monic with the required form.

In particular, if \(x, y \) are any elements of \(R \), then \(xy \in (x^2, y^2) \), since \((xy)^2 = (x^2)(y^2) \in I^2 \). This holds even when \(x \) and \(y \) are indeterminates.

More generally, if \(x_1, \ldots, x_n \in R \) are any elements and \(I = (x_1^n, \ldots, x_k^n)R \), then every monomial \(r = x_1^{i_1} \cdots x_k^{i_k} \) of degree \(n \) (here the \(i_j \) are nonnegative integers whose sum is \(n \)) is in \(\mathfrak{I} \), since
\[
 r^n = (x_1^n)^{i_1} \cdots (x_k^n)^{i_k} \in I^n,
\]
since every \(x_j^n \in I \) and \(\sum_{j=1}^k i_j = n \).

Now let \(K \) be any field of characteristic \(\neq 3 \), and let \(X, Y, Z \) be indeterminates over \(K \). Let
\[
 R = K[X, Y, Z]/(X^3 + Y^3 + Z^3) = K[x, y, z],
\]
which is a normal domain with an isolated singularity. Here, we are using lower case letters to denote the images of corresponding upper case letters after taking a quotient: we shall frequently do this without explanatory comment. Let \(I = (x, y)R \). Then \(z^3 \in I^3 \), and so \(z \in \mathfrak{I} \). This shows that an ideal generated by a system of parameters in a local ring need not be integrally closed, even if the elements are part of a minimal set of generators of the maximal ideal. It also follows that \(z^2 \in \mathfrak{I}^2 \), where \(I \) is a two generator ideal, while \(z^2 \notin I \). Thus, the Briançon-Skoda theorem, as we stated it for regular rings, is not true for \(R \). (There is a version of the theorem that is true: it asserts that for an \(n \)-generator ideal \(I \), \(\mathfrak{I}^n \subseteq I^* \), where \(I^* \) is the tight closure of \(I \). But we are not assuming familiarity with tight closure here.)

We next want to give a proof that, even when a normal domain \(R \) is not Noetherian, it is an intersection of valuation domains. We first show:

Lemma. Let \(L \) be a field, \(R \subseteq L \) a domain, and \(I \subset R \) a proper ideal of \(R \). Let \(x \in L - \{0\} \). Then either \(IR[x] \) is a proper ideal of \(R[x] \) or \(IR[1/x] \) is a proper ideal of \(R[1/x] \).

Proof. We may replace \(R \) by its localization at a maximal ideal containing \(I \), which only makes the problem harder. Assume that neither is a proper ideal. Since \(1 \in IR[x] \) we obtain an equation
\[
(\#) \quad 1 = i_0 + i_1 x + \cdots + i_n x^n,
\]
where all of the \(i_h \in I \). Similarly, we obtain an equation
\[
(\#\#) \quad 1 = j_0 + j_1(1/x) + \cdots j_m(1/x^n),
\]
where all of the \(j_h \in I \).
where all of the $j_h \in I$. We may assume that n and m have been chosen as small as possible. By reversing the roles of x and $1/x$, if necessary, we may assume that $n \geq m$. Then
\[
1 - j_0 = j_1(1/x) + \cdots + j_m(1/x)^m.
\]
Multiplying by the inverse of $1 - j_0$, we have that
\[
1 = j'_1(1/x) + \cdots + j'_m(1/x)^m,
\]
where the $j'_h \in I$. Multiplying through by x^m yields that
\[
x^m = j'_1x^{m-1} + \cdots + j'_m \in I +Ix + \cdots +Ix^{m-1}.
\]
It follows by induction on k that for all $k \geq 0$,
\[
x^k \in I +Ix + \cdots +Ix^{m-1}.
\]
For the inductive step, once we have that
\[
x^{k-1} \in I +Ix + \cdots +Ix^{m-1},
\]
we can multiply by x to get that
\[
x^k \in I +Ix +Ix^2 + \cdotsIx^m,
\]
and we can use the fact that
\[
x^m \in I +Ix + \cdots +Ix^{m-1}
\]
to eliminate the rightmost term on the right. But then we can get rid of the x^m, \ldots, x^n terms in the displayed equation (#), and we have that
\[
1 \in I +Ix + \cdots +Ix^{m-1},
\]
contradicting the minimality of our choice of n. □

Corollary. Let $R \subseteq L$, a field, and let $I \subseteq R$ be a proper ideal of R. Then there is a valuation domain V with $R \subseteq V \subseteq L$ such that $IV \neq V$.

Proof. Consider the set S of all rings S such that $R \subseteq S \subseteq L$ and $IS \neq S$. This set contains R, and so is not empty. The union of a chain of rings in S is easily seen to be in S. Hence, by Zorn’s lemma, S has a maximal element V. We claim that V is a valuation domain with fraction field L. For let $x \in L - \{0\}$. By the preceding Lemma, either $IV[x]$ or $IV[1/x]$ is a proper ideal. Thus, either $V[x] \in S$ or $V[1/x] \in S$. By the maximality of V, either $x \in V$ or $1/x \in V$. □

We now can prove the result we were aiming for.
Corollary. Let R be a normal domain with fraction field L. Then R is the intersection of all valuation domains V with $R \subseteq V \subseteq L$.

Proof. Let $x \in L - R$. It suffices to find V with $R \subseteq V \subseteq L$ such that $x \notin V$. Let $y = 1/x$. We claim that y is not a unit in $R[y]$, for its inverse is x, and if y were a unit we would have

$$x = r_0 + r_1(1/x) + \cdots + r_n(1/x)^n$$

for some positive integer n and $r_j \in R$. Multiplying through by x^n gives an equation of integral dependence for x on R, and since R is normal this yields $x \in R$, a contradiction. Since $yR[y]$ is a proper ideal, by the preceding Corollary we can choose a valuation domain V with $R[y] \subseteq V \subseteq K$ such that yV is a proper ideal of V. But this implies that $x \notin V$. □

The following important result can be found in most introductory texts on commutative algebra, including [M.F. Atiyah and I.G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, Reading, Massachusetts, 1969], which we refer to briefly as Atiyah-Macdonald.

Theorem. If R is a normal Noetherian domain, then the integral closure S of R in a finite separable extension G of its fraction field F is module-finite over R.

Proof. See Proposition 5.19 of Atiyah-Macdonald for a detailed argument. We do mention the basic idea: choose elements s_1, \ldots, s_d of S that are basis for G over F, and then the discriminant $D = \det(\text{Trace}_G/F s_is_j)$, which is nonzero because of the separability hypothesis, multiplies S into the Noetherian R-module $\sum_{i=1}^d Rs_i$. □

Theorem (Nagata). Let R be a complete local domain. Then the integral closure of R in a finite field extension of its fraction field is a finitely generated R-module.

Proof. Because R is module-finite over a formal power series ring over a field, or, if R does not contain a field, over DVR whose fraction field has characteristic zero, we may replace the original R by a formal power series ring, which is regular and, hence, normal. Unless R has characteristic p the extension is separable and we may apply the Theorem just above.

Thus, we may assume that R is a formal power series ring $K[[y_1, \ldots, y_n]]$ over a field K of characteristic p. If we prove the result for a larger finite field extension, we are done, because the original integral closure will be an R-submodule of a Noetherian R-module. This enables us to view the field extension as a purely inseparable extension followed by a separable extension. The separable part may be handled using the Theorem just above. It follows that we may assume that the field extension is contained in the fraction field of $K^{1/q}[x_1, \ldots, x_n]$ with $x_i = y_i^{1/q}$ for all i. We may adjoin the x_i to the given field extension, and it suffices to show that the integral closure is module-finite over $K[[x_1, \ldots, x_n]]$, since this ring is module-finite over $K[[y_1, \ldots, y_n]]$. Thus, we have reduced to the case where $R = K[[x_1, \ldots, x_n]]$ and the integral closure \bar{S} will lie inside $K^{1/q}[x_1, \ldots, x_n]$, since this ring is regular and, hence, normal.
Now consider the set \mathcal{L} of leading forms of the elements of S, viewed in the ring $K^{1/q}[x_1, \ldots, x_n]$. Let d be the degree of the field extension from the fraction field of R to that of S. We claim that any $d + 1$ or more F_1, \ldots, F_N of the leading forms in \mathcal{L} are linearly dependent over (the fraction field of) R for, if not, choose elements s_j of S which have them as leading forms, and note that these will also be linearly independent over R, a contradiction (if a non-trivial R-linear combination of them were zero, say $\sum_j r_j s_j = 0$, where the r_j are in R, and if F_j has degree d_j while the leading form g_j of r_j has degree d'_j, then one also gets $\sum_j g_j F'_j = 0$, where the sum is extended over those values of j for which $d_j + d'_j$ is minimum). Choose a maximal set of linearly independent elements f_j of \mathcal{L}. Let K' denote the extension of K generated by all of their coefficients. Since there are only finitely many, $T = K'[x_1, \ldots, x_n]$ is module-finite over R. But T contains every element L of \mathcal{L}, for each element of \mathcal{L} is linearly dependent over R on the f_j, and so is in the fraction field of T, and has its q th power in $R \subseteq T$. Since T is regular, it is normal, and so must contain L.

Thus, the elements of \mathcal{L} span a finitely generated R-submodule of T, and so we can choose a finite set $L_1, \ldots, L_k \subseteq \mathcal{L}$ that span an R-module containing all of \mathcal{L}. We can then choose finitely many elements s_1, \ldots, s_k of S whose leading forms are the L_1, \ldots, L_k.

Let S_0 be the module-finite extension of R generated by the elements s_1, \ldots, s_k. We complete the proof by showing that $S_0 = S$. We first note that for every element L of \mathcal{L}, S_0 contains an element s whose leading form is L. To see this, observe that if we write L as an R-linear combination $\sum_j r_j L_j$, the same formula holds when every r_j is replaced by its homogeneous component of degree $\deg L - \deg L_j$. Thus, the r_j may be assumed to be homogeneous of the specified degrees. But then $\sum_j r_j s_j$ has L as its leading form.

Let $s \in S$ be given. Recursively choose $u_0, u_1, \ldots, u_n, \ldots \in S_0$ such that u_0 has the same leading form as s and, for all n, u_{n+1} has the same leading form a $s - (u_0 + \cdots + u_n)$. For all $n \geq 0$, let $v_n = u_0 + \cdots + u_n$. Then $\{v_n\}_n$ is a Cauchy sequence in S_0 that converges to s in the topology given by the powers m_T^n of the maximal ideal of $T = K'[x_1, \ldots, x_n]$. Since S_0 is module-finite over $K[[x_1, \ldots, x_n]]$, S_0 is complete. By Chevalley’s lemma, which is discussed below, when we intersect the m_T^n with S_0 we obtain a sequence of ideals cofinal with the powers of the maximal ideal of S_0. Thus, the sequence, which converges to s, is Cauchy with respect to the powers of the maximal ideal of S_0. Since, as observed above, S_0 is complete, we have that $s \in S_0$, as required. □