Let R be any ring and $I \subseteq R$ any ideal. By the extended Rees ring or second Rees ring of I over R we mean the ring $R[It, 1/t] \subseteq R[t]$. In this context we shall standardly write v for $1/t$. Note that if I is proper, v is not a unit of $R[It, v]$. This ring is \mathbb{Z}-graded. Written out as a sum of graded pieces

$$R[It, v] = \cdots + Rv^k + \cdots + Rv^2 + Rv + R + It + I^2t^2 + \cdots + I^n t^n + \cdots.$$

The element v generates a homogeneous principal ideal, and

$$vR[It, v] = \cdots + Rv^k + \cdots + Rv^2 + Rv + I + I^2t + I^3t^2 + \cdots + I^n t^{n-1} + \cdots.$$

From this it follows easily that $R[It, v]/(v) \cong \text{gr}_I R$. There is a composite surjection

$$R[It, v] \twoheadrightarrow \text{gr}_I R \twoheadrightarrow R/I.$$

When I is the unit ideal of R we have that $R[It, v] = R[t, t^{-1}]$.

When (R, m, K) is local and I is proper we further have a composite surjection

$$R[It, v] \twoheadrightarrow R/I \twoheadrightarrow R/m = K,$$

and the kernel is a maximal ideal \mathcal{M} of $R[It, v]$. Explicitly,

$$\mathcal{M} = \cdots + Rv^k + \cdots + Rv^2 + Rv + m + It + I^2t^2 + \cdots + I^n t^n + \cdots.$$

Theorem. Let (R, m, K) be local, let $I \subseteq R$ be proper, and let $R[It, v]$ and \mathcal{M} be as in the paragraphs just above,

(a) The Krull dimension of $R[It, 1/t]$ is $\dim (R) + 1$, and this is the height of \mathcal{M}.

(b) $\dim (\text{gr}_I(R)) = \dim (R)$.

Proof. Let

$$\mathcal{P} = \cdots + mv^k + \cdots + mv^2 + mv + m + It + I^2t^2 + \cdots + I^n t^n + \cdots,$$

which is the contraction of $mR[t, 1/t]$ to $R[It, v]$. Then $\mathcal{P} \subseteq \mathcal{M}$ and $R[It, v]/\mathcal{P} \cong K[v]$, a polynomial ring in one variable over a field. The height of \mathcal{P} is the same as the height of m: when we localize at \mathcal{P} in $R[It, v]$, v becomes invertible, so that $t = 1/v$ becomes an element of the localized ring. But $R[It, v][t] = R[t, v]$, and the expansion of \mathcal{P} is $mR[t, 1/t]$. The localization at the expansion is just $R(t)$ (note that when we localize $R[t]$ at $mR[t]$, v becomes an element of the ring), which we already know has the same dimension as R. Thus, height $\mathcal{P} = \dim (R)$. Since $\mathcal{M} = \mathcal{P} + vR[It, v]$ is strictly larger than \mathcal{P}, we have

$$\dim (R[It, v]/\mathcal{P}) = \dim (R).$$
that height $\mathcal{M} \geq \dim (R) + 1$. To complete the proof of (a), it will suffice to show that $\dim (R[v]) \leq \dim (R) + 1$, for then height $\mathcal{M} \leq \dim (R) + 1$ as well.

We first reduce to the case where R is a domain. To do so, we want to understand the minimal primes of $S = R[t, v]$. If q is any prime of S, it lies over some prime of R, and this prime contains a minimal prime p of R. We shall show that there is a unique minimal prime \mathfrak{p} of S containing p, and it will follow that every minimal prime has the form \mathfrak{p}. To see this, note that q cannot contain v, for v is not a zerodivisor in S. Hence, q corresponds via expansion to a minimal prime of S_v containing p. But $S_v \cong R[t, v]$, and $pR[t, 1/t]$ is already a minimal prime of $R[t, 1/t]$. It follows that $q = pR[t, 1/t] \cap S$, and this is the minimal prime \mathfrak{p}. Note that $R[t, 1/t]/\mathfrak{p}$ embeds in $(R/p)[t, 1/t]$, and that the image is the extended Rees ring of $I(R/p)$. Therefore, it suffices to show that the dimension of each of these Rees rings over a domain D obtained by killing a minimal prime of R has dimension at most $\dim (D) + 1 \leq \dim (R) + 1$, and we may therefore assume without loss of generality that R is a local domain.

But S is then a domain finitely generated over R. If the fraction field of R is \mathcal{F}, then the fraction field of S is $\mathcal{F}(t)$. If Q is any prime ideal of S, Q lies over, say, P in R, and the residue class fields of R_P and S_Q are κ_P and κ_Q respectively, then the dimension formula yields

$$\text{height } Q \leq \text{height } P + \text{tr. deg.}(\mathcal{F}(t)/\mathcal{F}) - \text{tr. deg.}(\kappa_Q/\kappa_P) \leq \text{height } P + 1 \leq \dim (R) + 1,$$

as required.

For part (b), note that the height of \mathcal{M}, which is $\dim (R) + 1$ drops exactly 1 when we kill the nonzerodivisor v. This shows that $\dim (\text{gr}_I(R)) \geq \dim (R)$. But killing a nonzerodivisor in a Noetherian domain of finite Krull dimension drops the dimension by at least one, so that $\dim (\text{gr}_I(R)) \leq \dim (S) - 1 = \dim (R)$. □

Corollary. Let x_1, \ldots, x_n be a system of parameters in a local ring (R, m, K). Let F be a homogenous polynomial of degree d in $R[X_1, \ldots, X_n]$ such that $F(x_1, \ldots, x_n) = 0$. That is, F gives a relation over R on the monomials of degree d in x_1, \ldots, x_n. Then all coefficients of F are in m.

Proof. Consider the associated graded ring $\text{gr}_I(R)$, where $I = (x_1, \ldots, x_n)R$. This ring is generated by the images $\overline{x}_1, \ldots, \overline{x}_n$ of x_1, \ldots, x_n in $I/I^2 = [\text{gr}_I(R)]_1$. Let $A = R/I$, an Artin local ring. By the preceding Theorem, $\dim (\text{gr}_I(R)) = n$. But $\text{gr}_I(R) = A[\overline{x}_1, \ldots, \overline{x}_n]$. Killing the maximal ideal m/I of A does not affect the dimension of this ring. It follows that quotient has dimension n, so that $K[\overline{x}_1, \ldots, \overline{x}_n]$ is a polynomial ring in $\overline{x}_1, \ldots, \overline{x}_n$. If $F(x_1, \ldots, x_n) = 0$ and has a coefficient outside m, we find the $\overline{F}(\overline{x}_1, \ldots, \overline{x}_n) = 0$ in $K[\overline{x}_1, \ldots, \overline{x}_n]$, where \overline{F} is the image of F mod m and so is a nonzero polynomial in the $K[\overline{x}_1, \ldots, \overline{x}_n]$. This forces the dimension of $K \otimes_R \text{gr}_I(R)$ to be smaller than n, a contradiction. □

We next want to prove two consequences of the Briançon-Skoda Theorem that were stated without proof in as Corollaries at the bottom of p. 1 and the top of p. 2 of the Lecture Notes of September 6. The next result generalizes the first Corollary.
Theorem (corollary of the Briançon-Skoda Theorem). Let \(R \) be a regular Noetherian ring of Krull dimension \(n \) and let \(f_1, \ldots, f_{n+1} \) be elements of \(R \). Then
\[
f_1^n \cdots f_{n+1}^n \in (f_1^{n+1}, \ldots, f_{n+1}^{n+1})R.
\]

Proof. Call the product on the left \(g \) and the ideal on the right \(I \). If \(g \not\in I \), then \((I + Rg)/I\) is not zero, and we can localize at a prime in its support. Therefore, we may without loss of generality that assume that \((R, m, \mathbb{K})\) is a regular local ring of dimension at most \(n \). Second, if \(g \notin I \) this remains true when we replace \(R \) by \(R(t) \), since \(R(t) \) is faithfully flat over \(R \). We also have that \(R \) and \(R(t) \) have the same dimension. Thus, we may assume that \(R \) has an infinite residue class field. Let \(h = f_1 \cdots f_n \), so that \(g = h^n \). Since \(h^{n+1} \in I^{n+1} \), \(h \in I \). Since \(\text{ann}(I) \leq \dim(R) \leq n \) and the residue class field is infinite, \(I \) is integral over an ideal \(I_0 \) with at most \(n \) generators. Then \(h \in I_0 \), and it follows from the Briançon-Skoda theorem that \(h^n \in I_0 \subseteq I \), as required. \(\square \)

We next observe:

Theorem. Let \(R \) denote \(\mathbb{C}\{z_1, \ldots, z_n\} \) or \(\mathbb{C}\llbracket z_1, \ldots, z_n \rrbracket \), the convergent or formal powers series ring in \(n \) variables. Let \(f \) be in the maximal ideal of \(R \), and let \(I \) be the ideal generated by the partial derivatives \(\partial f/\partial z_i \) of \(f \). Then \(f \) is integrally dependent on \(I \).

Proof. We assume the result from the first Problem Set, Problem #6, that the integral closure of \(I \) is an intersection of integrally closed \(m \)-primary ideals (but we do not need this result for the case where the \(\partial f/\partial z_i \) generate an \(m \)-primary ideal). Choose an integrally closed \(m \)-primary ideal \(\mathfrak{A} \supseteq I \) with \(f \not\in \mathfrak{A} \). Then we can map \(R \) to a discrete valuation ring \(V \) in such a way that the image \(f \) is not in \(\mathfrak{A}V \) (and, hence, not in \(IV \)), and it follows that \(m \) maps into the maximal ideal of \(V \). Note that \(V \) cannot be just a field here, for then \(f \) maps to 0. Replace \(V \) by its completion: we may assume that \(V \) is complete. Since we are in the equal characteristic 0 case, the image of \(\mathbb{C} \) in \(V \) can be extended to a coefficient field. Thus, we may assume that \(V = L[[x]] \), where \(\mathbb{C} \subseteq L \) and \(m \) maps into \((x) \).

Let \(h : R \to L[[x]] \) be the map, and \(h(z_i) = g_i(x) \), \(1 \leq i \leq n \). Then \(f \) maps to \(f(g_1(x), \ldots, g_n(x)) \). The key point is that the chain rule holds here, by a formal calculation. Thus,
\[
\frac{d}{dx}(h(f)) = \sum_{i=1}^n h(\partial f/\partial z_i) \frac{dg_i(x)}{dx}.
\]
It follows that the derivative of \(h(f) \) is in \(IV \). But over a field of characteristic 0, the derivative of a nonzero non-unit \(v \) has order exactly one less than that of \(v \). Hence, \(f \in IV \) as well. \(\square \)

Theorem (corollary of the Briançon-Skoda theorem). With hypotheses as in the preceding Theorem, \(f^n \) is in the ideal generated by its partial derivatives.

Proof. This is immediate from the preceding Theorem and the Briançon-Skoda Theorem. \(\square \)