Detailed proof of the Jacobian theorem: existence of sufficiently many special sequences.

Note first that if R itself is a field then $S = L$ and $S' = S$, so that $J_{S/R} = J_{S'/R}$ and there is nothing to prove. If R is finite then R must be a field, since R is a domain, and therefore we may assume without loss of generality that R is infinite in the remainder of the proof.

We shall need prime avoidance in the following form (cf. [I. Kaplansky, Commutative Rings, Revised Edition, Univ. of Chicag Press, Chicago, 1974], Theorem 124, p. 90.):

Lemma (prime avoidance for cosets). Let R be any commutative ring, $x \in R$, $I \subseteq R$ an ideal and P_1, \ldots, P_k prime ideals of R. Suppose that the coset $x + I$ is contained in $\bigcup_{i=1}^k P_i$. Then there exists j such that $Rx + I \subseteq P_j$.

Proof. If $k = 1$ the result is clear. Choose $k \geq 2$ minimum giving a counterexample. Then no two P_i are comparable, and $x + I$ is not contained in the union of any $k - 1$ of the P_i. Now $x = x + 0 \in x + I$, and so x is in at least one of the P_j; say $x \in P_k$. If $I \subseteq P_k$, then $Rx + I \subseteq P_k$ and we are done. If not, choose $i_0 \in I - P_k$. We can also choose $i \in I$ such that $x + i \notin \bigcup_{j=1}^{k-1} P_i$. Choose $u_j \in P_j - P_k$ for $j < k$, and let u be the product of the u_j. Then $u_0 \in I - P_k$, but is in P_j for $j < k$. It follows that $x + (i + u_0) \in x + I$, but is not in any P_j, $1 \leq j \leq k$, a contradiction. □

The following somewhat technical “general position” lemma is needed to prove that Jacobian determinants arising from special sequences generate the Jacobian ideal.

Lemma (general position for generators). Let $R \subseteq T$ be a commutative rings such that R is an infinite integral domain and let P_1, \ldots, P_r be mutually incomparable prime ideals of T contracting to (0) in R. Let $N \geq n \geq 1$ be integers and let $M = (g_1, \ldots, g_N)$ be a $1 \times N$ matrix over T with entries in $I = \bigcap_{j=1}^r P_j$. Let κ_j denote the field $T_{P_j}/P_j T_{P_j}$ for $1 \leq j \leq r$ and let V_j denote the κ_j-vector space $P_j T_{P_j}/P_j^2 T_{P_j}$. Suppose that for all j, $1 \leq j \leq r$, the κ_j-span of the images of the g_i under the obvious map $I \subseteq P_j \rightarrow P_j T_{P_j} \rightarrow V_j$ has κ_j-vector space dimension at least n.

Then one may perform elementary column operations on the matrix M over T so as to produce a matrix with the property that, for all j, $1 \leq j \leq r$, the images of any n of its distinct entries are κ_j-linearly independent elements of V_j.

Of course, the entries of the new matrix generate the ideal $(g_1, \ldots, g_N)T$.

Proof. First note that the infinite domain R is contained in each of the κ_j.

We proceed by induction on the number of primes. If there are no primes there is nothing to prove. Now suppose that \(1 \leq h \leq r \) and that column operations have already been performed so that any \(n \) entries have \(\kappa_j \)-independent images in \(V_j \) if \(j < h \). (If \(h = 1 \) we may use \(M \) as is, since no condition is imposed.) We need to show that we can perform elementary column operations so that the condition also holds for \(j = h \). Some \(n \) of the entries have \(\kappa_h \)-independent images in \(V_h \); by renumbering we may assume that these are \(g_1, \ldots, g_n \). We now show that by induction on \(a, n + 1 \leq a \leq N \) that we may perform elementary column operations on the matrix so that

(1) The images of the entries of the matrix in each \(V_j \) for \(j < h \) do not change and

(2) Any \(n \) of the images of \(g_1, \ldots, g_a \) in \(V_h \) are independent.

Choose \(t \in T \) so that it is in the primes \(P_j \) for \(j < h \) but not in \(P_h \). Thus, \(t \) has nonzero image \(\tau \) in \(\kappa_h \). Let \(v_j \) denote the image of \(g_j \) in \(V_h \). We may assume that the images of any \(n \) of the elements \(g_1, \ldots, g_{a-1} \) are independent in \(V_h \). Thus, it will suffice to show that there exist \(r_1, \ldots, r_n \in R \) such that the image of \(g_n + tr_1 g_1 + \cdots + tr_n g_n \) is independent of any \(n - 1 \) of the vectors \(v_1, \ldots, v_{n-1} \) in \(V_h \), i.e., such that \(v_n + \tau r_1 v_1 + \cdots + \tau r_n v_n \) is independent of any \(n - 1 \) of the vectors \(v_1, \ldots, v_{n-1} \). (Note that condition (1) is satisfied automatically because the image of \(t \) is 0 in each \(\kappa_j \) for \(j < h \).)

For each set \(D \) of \(n - 1 \) vectors in \(v_1, \ldots, v_{a-1} \), there is a nonzero polynomial \(f_D \) in \(n \) variables over \(\kappa_h \), and whose nonvanishing at the point \((r_1, \ldots, r_n)\) guarantees the independence of \(v_a + \tau r_1 v_1 + \cdots + \tau r_n v_n \) from the vectors in \(D \). To see this, choose a \(\kappa_h \)-basis for the space spanned by all the \(v_j \) and write the vectors in \(D \) and \(v_a + \tau X_1 v_1 + \cdots + \tau X_n v_n \) in terms of this basis. Form a matrix \(C \) from the coefficients. We can choose values of the \(X_i \) in \(R \) that achieve the required independence, and this means that some \(n \times n \) minor of \(C \) does not vanish identically. (If \(v_a \) is independent of the vectors in \(D \) take all the \(X_i \) to be zero. Otherwise, \(v_a \) is in the \(\kappa_h \)-span of \(D \), while at least one of the \(n \) independent vectors \(v_1, \ldots, v_n \) is not, say \(v_\nu \), and we can take all the \(X_i \) except \(X_\nu \) to be 0 and \(X_\nu = 1 \).) This minor gives the polynomial \(f_D \in \kappa_h[X_1, \ldots, X_n] \).

Choose a field extension \(\mathcal{F} \) of \(K = \frac{\mathcal{R}}{(r)} \) that contains isomorphic copies of all of the \(\kappa_j \). The product \(f \) of the \(f_D \) in \(\mathcal{F}[x_1, \ldots, x_n] \) as \(D \) varies through the \(n - 1 \) element subsets of \(v_1, \ldots, v_{a-1} \) is then a nonzero polynomial in \(\mathcal{F}[X_1, \ldots, X_n] \), and so cannot vanish identically on the infinite domain \(R \). Choose \(r_1, \ldots, r_n \in R \) so that \(f(r_1, \ldots, r_n) \neq 0 \). Then every \(f_D(r_1, \ldots, r_n) \neq 0 \). \(\square

Lemma. Let \(g_1, \ldots, g_n \) be elements of a Noetherian ring \(T \) and let \(J \) be an ideal of \(T \) of depth at least \(n \) such that \((g_1, \ldots, g_n)T + J \) is a proper ideal of \(T \). If \(g_1, \ldots, g_i \) is a regular sequence in \(T \) (i.e., we may be assuming nothing about \(g_1, \ldots, g_n \)) then there are elements \(j_{i+1}, \ldots, j_n \in J \) such that

\[
g_1, \ldots, g_i, g_{i+1} + j_{i+1}, \ldots, g_n + j_n
\]

is a regular sequence in \(T \).

In particular, there are elements \(j_1, \ldots, j_n \in J \) such that \(g_1 + j_1, \ldots, g_n + j_n \) is a regular sequence.
Proof. The last sentence is the case $i = 0$. We proceed by induction on $n - i$. If $i = n$ there is nothing to prove. We may pass to $T/(g_1, \ldots, g_i)T$, and so reduce to the case where $i = 0$. The image J is the same as the image of $J' = J + (g_1, \ldots, g_i)$ modulo (g_1, \ldots, g_i). J' is a proper ideal of depth at least n, and so killing a regular sequence of length i in J' produces an ideal of depth at least $n - i > 0$. Thus, we may assume that $i = 0$.

It then suffices to choose $j = j_1$ such that $g_1 + j$ is not a zerodivisor, for we may apply the induction hypothesis to construct the rest of the sequence. But if this were not possible we would have that $g_1 + j$ is contained in the union of the associated primes of (0) in T, and this implies that J is contained in an associated prime of (0) in T by the Lemma on prime avoidance for cosets proved at the beginning of this Lecture. This is a contradiction, since the depth of J is positive. \qed

Theorem (existence of sufficiently many special sequences). Let R be an infinite Cohen-Macaulay Noetherian domain and let S be a torsion-free generically étale R-algebra essentially of finite type over R. Let T be a localization of a polynomial ring in n variables over R that maps onto S, and let I be the kernel. Let P_1, \ldots, P_r be the minimal primes of I in T. Then the Jacobian ideal $J_{S/R}$ is generated by the images of elements $\det (\partial g_j/\partial x_i)$ such that g_1, \ldots, g_n is a special sequence of elements of I, i.e., a regular sequence in I such that for every j, $1 \leq j \leq r$, $P_jT_{P_j} = (g_1, \ldots, g_n)T_{P_j}$.

Proof. First choose generators g_1, \ldots, g_N for I. Think of these generators as forming the entries of a $1 \times N$ matrix as in the Lemma on general position for generators. Each T_{P_j} is regular local of dimension n, so that each $P_jT_{P_j}/P_j^2T_{P_j}$ has dimension n. It follows from the Lemma cited that we may assume without loss of generality that every n element subset of the generators g_1, \ldots, g_N generates every $P_jT_{P_j}$. We know that the size n minors of the $n \times N$ matrix $(\partial g_j/\partial x_i)$ generate $J_{S/R}$. Fix one of these minors: by renumbering, we may assume that it corresponds to the first n columns. It will suffice to show that the image of this minor in S is the same as the image of a minor coming from a special sequence. We may apply the preceding Lemma to choose elements h_1, \ldots, h_N in $J = I^2$ such that $g_1 + h_1, \ldots, g_n + h_n$ is a regular sequence. This sequence is special: since $J = I^2 \subseteq P_j^2$ for all j, the elements generate each $P_jT_{P_j}$, and it was chosen to be a regular sequence. Finally, by the Remark near the top of p. 2 of the Lecture Notes of September 27, the image of the Jacobian determinant of $g_1 + h_1, \ldots, g_n + h_n$ in S is the same as the image of the Jacobian determinant of g_1, \ldots, g_n, and the result follows. \qed