If \(I \subseteq J \) and \(J \) is integral over \(I \), we call \(I \) a \textit{reduction} of \(J \). With this terminology, we have shown that if \((R, m, K)\) is local with \(K \) infinite, every ideal \(I \subseteq m \) has a reduction with \(\operatorname{an}(I) \) generators, and one cannot do better than this whether \(K \) is infinite or not.

We have previously defined analytic spread for ideals of local rings. We can give a global definition as follows: if \(R \) is Noetherian and \(I \) is any ideal of \(R \), let

\[
\operatorname{an}(I) = \sup \{ P \in \operatorname{Spec}(R) : \operatorname{an}(IR_P) \},
\]

which is bounded by the the number of generators of \(I \) and also by the dimension of \(R \).

The Briançon-Skoda theorem then gives at once:

\textbf{Theorem.} \textit{Let} \(R \) \textit{be regular and} \(I \) \textit{an ideal. Let} \(n = \operatorname{an}(I) \). \textit{Then for all} \(k \geq 1 \), \(T^{n+k-1} \subseteq I^k \).

\textit{Proof.} If the two are not equal, this can be preserved while passing to a local ring of \(R \). Thus, without loss of generality, we may assume that \(R \) is local. The result is unaffected by replacing \(R \) by \(R(t) \), if necessary. Thus, we may assume that the residue class field of \(R \) is infinite. Then \(I \) has a reduction \(I_0 \) with \(n \) generators. From the form of the Briançon-Skoda theorem that we have already proved, we have that \(T^{n+k-1} = T_0^{n+k} \subseteq I_0^k \subseteq I \).

The intersection of all ideals \(I_0 \) in \(I \) such that \(I \) is integral over \(I_0 \) is called the \textit{core} of \(I \). It is not immediately clear that the core is nonzero, but we have:

\textbf{Theorem.} \textit{Let} \(R \) \textit{be regular local with infinite residue class field, and let} \(I \) \textit{be a proper ideal with} \(\operatorname{an}(I) = n \). \textit{Then the core of} \(I \) \textit{contains} \(T^n \).

\textit{Proof.} If \(I \) is integral over \(I_0 \) then they have the same analytic spread, and \(I_0 \) has a reduction \(I_1 \) with \(n \) generators. Then \(T^n = T_0^n \subseteq I_1 \subseteq I_0 \), and so \(T^n \) is contained in all such \(I_0 \).

We next want to give a proof of the Briançon-Skoda theorem in characteristic \(p \) that is, in many ways, much simpler than the proof we have just given. The characteristic \(p \) result can be used to prove the equal characteristic 0 case as well.

Recall that when \(x_1, \ldots, x_d \) is a regular sequence on \(M \), we require not only that \(x_i \) is a nonzerodivisor on \(M/(x_1, \ldots, x_{i-1})M \) for \(1 \leq i \leq d \), but also that \((x_1, \ldots, x_d)M \neq M \). If \((x_1, \ldots, x_d) \) has radical \(m \) in the local ring \((R, m, K)\), this is equivalent to the assertion \(mM \neq M \), for otherwise we get that \(m^tM = M \) for all \(t \), and for large \(t \), \(m^t \subseteq (x_1, \ldots, x_d) \).

Note that when \(x_1, \ldots, x_d \) is a regular sequence in a ring \(R \) and \(M \) is flat, we continue to have that \(x_i \) is a nonzerodivisor on \(M/(x_1, \ldots, x_{i-1})M \) for \(1 \leq i \leq d \) (by induction on...
d this reduces to the case where \(d = 1 \) and the fact that \(x = x_1 \) is a nonzerodivisor on \(R \) give an exact sequence

\[
0 \rightarrow R \xrightarrow{x} R
\]

which stays exact when we tensor with \(M \) over \(R \). If \(M \) is faithfully flat, every regular sequence in \(R \) is a regular sequence on \(M \). If \(R \) is regular, this characterizes faithful flatness:

Lemma. Let \((R,m,K)\) be local. Then \(M \) is faithfully flat over \(R \) if and only if every regular sequence in \(R \) is a regular sequence on \(M \).

Proof. By the preceding discussion, we need only prove the “if” part. It will suffice to prove that for every \(R \)-module \(N \), \(\text{Tor}_R^i(N, M) = 0 \) for all \(i \geq 1 \). Since \(N \) is a direct limit of finitely generated modules, it suffices to prove this when \(N \) is finitely generated. We use reverse induction on \(i \). We have the result for \(i > \dim(R) \) because \(\dim(R) \) bounds the projective dimension of \(N \). We assume the result for \(i \geq k + 1 \), where \(k \geq 1 \), and prove it for \(i = k \). Since \(N \) has a filtration by prime cyclic modules, it suffices to prove the vanishing when \(N \) is a prime cyclic module \(R/P \). Let \(x_1, \ldots, x_d \) be a maximal regular sequence of \(R \) in \(P \). Then \(P \) is a minimal prime of \((x_1, \ldots, x_d)R \), and, in particular, an associated prime. It follows that we have a short exact sequence

\[
0 \rightarrow R/P \rightarrow R/(x_1, \ldots, x_d)R \rightarrow C \rightarrow 0
\]

for some module \(C \). By the long exact sequence for Tor, we have

\[
\cdots \rightarrow \text{Tor}_k^R(C, M) \rightarrow \text{Tor}_k^R(R/P, M) \rightarrow \text{Tor}_k^R(R/(x_1, \ldots, x_d)R, M) \rightarrow \cdots
\]

The leftmost term vanishes by the induction hypothesis and the rightmost term vanishes by problem 4 of Problem Set #3. \(\square \)

We write \(F \) or \(F_R \) for the Frobenius endomorphism of a ring \(R \) of positive prime characteristic \(p \). Thus \(F(r) = r^p \). We write \(F^e \) or \(F^e_R \) for the \(e \)th iterate of \(F \) under composition. Thus, \(F^e(r) = r^{p^e} \).

Corollary. Let \(R \) be a regular Noetherian ring of positive prime characteristic \(p \). Then \(F^e : R \rightarrow R \) is faithfully flat.

Proof. The issue is local on primes \(P \) of the first (left hand) copy of \(R \). But when we localize at \(R - P \) in the first copy, we find that for each element \(u \in R - P \), \(u^{p^e} \) is invertible, and this means that \(u \) is invertible. Thus, when we localize we get \(F^e : R_P \rightarrow R_P \). Thus, it suffices to consider the local case. But if \(x_1, \ldots, x_d \) is a regular sequence in \(R_P \), it operates on the right hand copy as \(x_1^{p^e}, \ldots, x_d^{p^e} \), which is regular in \(R_P \). \(\square \)

If \(I, J \subseteq R \), we write \(I:_R J \) for \(\{ r \in R : rJ \subseteq I \} \), which is an ideal of \(R \).
Proposition. Let I and J be ideals of the ring R such that J is finitely generated. Let S be a flat R-algebra. Then $(I:_R J)S = IS :_S JS$.

Proof. Note that if $\mathfrak{A} \subseteq R$, $\mathfrak{A} \otimes_R S$ injects into S, since S is flat over R. But its image is $\mathfrak{A}S$. Thus, we may identify $\mathfrak{A} \otimes_R S$ with $\mathfrak{A}S$.

Let $J = (f_1, \ldots, f_h)R$. Then we have an exact sequence

$$0 \rightarrow I :_R J \rightarrow R \rightarrow (R/I)^{\oplus h}$$

where the rightmost map sends r to the image of (rf_1, \ldots, rf_h) in $(R/I)^{\oplus h}$. This remains exact when we tensor with S over R, yielding an exact sequence:

$$0 \rightarrow (I :_R J)S \rightarrow S \rightarrow (S/IS)^{\oplus h}$$

where the rightmost map sends s to the image of (sf_1, \ldots, sf_h) in $(S/IS)^{\oplus h}$. The kernel of the rightmost map is $IS :_S JS$, and so $(I :_R J)S = IS :_S JS$. □

When R has positive prime characteristic p, we frequently abbreviate $q = p^e$, and $I^{[q]}$ denotes the expansion of $I \subseteq R$ to $S = R$ where, however, the map $R \rightarrow R$ that gives the structural homomorphism of the algebra is F^e. Thus, $I^{[q]}$ is generated by the set of elements $\{i^q : i \in I\}$. Whenever we expand an ideal I, the images of generators for I generate the expansion. In particular, note that if $I = (f_1, \ldots, f_n)R$, then $I^{[q]} = (f_1^q, \ldots, f_n^q)R$. Note that it is not true $I^{[q]}$ consists only of q th powers of elements of I: one must take R-linear combinations of the q th powers. Observe also that $I^{[q]} \subseteq I^q$, but that I^q typically needs many more generators, namely all the monomials of degree q in the generators involving two or more generators.

Corollary. Let R be a regular ring and let I and J be any two ideals. Then $(I :_R J)^{[q]} = I^{[q]} :_R J^{[q]}$.

Proof. This is the special case of in which $S = R$ and the flat homomorphism is F^e. □

The following result is a criterion for membership in an ideal of a regular domain of characteristic $p > 0$ that is slightly weaker, a priori, than being an element of the ideal. This criterion turns out to be extraordinarily useful.

Theorem. Let R be a regular domain and let $I \subseteq R$ be an ideal. Let $r \in R$ be any element. Let $c \in R - \{0\}$. Then $r \in I$ if and only if for all $e \geq 0$, $cr^{p^e} \in I^{[p^e]}$.

Proof. The necessity of the second condition is obvious. To prove sufficiency, suppose that there is a counterexample. Then r satisfies the condition and is not in I, and we may localize at a prime in the support of $(I + rR)/I$. This give a counterexample in which (R, m) is a regular local ring. Then $cr^{p^e} \in I^{[p^e]}$ for all $e \geq e_0$ implies that

$$c \in I^{[p^e]} :_R (xR)^{[p^e]} = (I :_R xR)^{[p^e]} \subseteq m^{[p^e]} \subseteq m^{p^e}$$
for all $e \geq e_0$, and so $c \in \bigcap_{e \geq e_0} m^{p^e}$. But this is 0, since the intersection of the powers of m is 0 in any local ring, contradicting that $c \neq 0$. □

We can now give a characteristic p proof of the Briançon-Skoda Theorem, which we restate:

Theorem (Briançon-Skoda). Let R be a regular ring of positive prime characteristic p. Let I be an ideal generated by n elements. Then for every positive integer k, $I^{n+k-1} \subseteq I^k$.

Proof. If $n = 0$ then $I = (0)$ and there is nothing to prove. Assume $n \geq 1$. Suppose $u \in I^{n+k-1} - I^k$. Then we can preserve this while localizing at some prime ideal, and so we may assume that R is a regular domain. By part (f) of the Theorem on the first page of the Lecture Notes of September 15, the fact that $u \in I^{n+k-1}$ implies that there is an element $c \in R - \{0\}$ such that $cu^N \in (I^{n+k-1})^N$ for all N. In particular, this is true when $N = q = p^e$, a power of the characteristic. Let $I = (f_1, \ldots, f_n)$. We shall show that $(I^{n+k-1})^q \subseteq (I^k)^q$. A typical generator of $(I^{n+k-1})^q$ has the form $f_1^{a_1} \cdots f_n^{a_n}$ where $\sum_{i=1}^n a_i = (n + k - 1)q$. For every i, $1 \leq i \leq n$, we can use the division algorithm to write $a_i = b_i q + r_i$, where $b_i \in \mathbb{N}$ and $0 \leq r_i \leq q - 1$. Then

$$(n + k - 1)q = \sum_{i=1}^n a_i = (\sum_{i=1}^n b_i)q + \sum_{i=1}^n r_i \leq (\sum_{i=1}^n b_i)q + n(q - 1)$$

which yields

$$(\sum_{i=1}^n b_i)q \geq (n + k - 1)q - nq + n = (k - 1)q + n$$

and so $\sum_{i=1}^n b_i \geq k - 1 + \frac{n}{q} > k - 1$, and this shows that $\sum_{i=1}^n b_i \geq k$, as required □