Examples. Let \(R = K[[x, y]]/(x^2, xy) \). This ring has a unique minimal prime, \(xR \), and \(m = (x, y)R \) is embedded. The image \(\bar{x} \) of \(x \) in the ring generates a submodule isomorphic to \(R/m \), which has lower dimension. Then \(e(R) = e(R/xR) = e(K[[y]]) = 1 \).

Likewise, if \(R = K[[x, y, z]]/(x, y) \cap (z) \), then \(R \) has two minimal primes, \((x, y)R \) and \(zR \). Thus, \(\dim(R) = \dim(R/zR) = \dim(K[[x, y]]) \), while the module \(zR \cong R/(x, y) \cong K[[z]] \) is one-dimensional. Thus, \(e(R) = e(R/zR) = e(K[[x, y]]) = 1 \).

These examples illustrate that a local ring of multiplicity 1 need not be regular. In the first example, \(R_{\text{red}} \) is a domain. In the second, \(R \) is reduced, but not equidimensional.

Finally, consider \(R = K[[u, v, x, y, z]]/((u, v) \cap (x, y) \cap z) \). This ring is reduced but not equidimensional. It has dimension 4 (when we kill \(zR \) we get \(K[[u, v, x, y]] \), but has two minimal primes with quotients of dimension 3. Consider the ring obtained when we localize at \(P = (u, v, x, y) \). The localization \(S = K[[u, v, x, y, z]]/(u, v, x, y)T \) is regular of dimension 4, and \(u, v, x, y \) is a regular system of parameters. Thus, \(R_P = S/(u, v) \cap (x, y) \) has two minimal primes with quotients that are regular of dimension 2. It follows that \(e(R) = 1 \) while \(e(R_P) = 2 \). The problem here is that we “localized away” the relevant minimal prime of \(R \) that governed its multiplicity.

Discussion: localization. One expects that under mild conditions, \(e(R_P) \leq e(R) \). But we only expect this for primes \(P \) such that \(\dim(R/P) + \dim(R_P) = \dim(R) \). (We always have \(\dim(R/P) + \dim(R_P) \leq \dim(R) \). The condition of equality means that \(P \) is part of a chain of primes of maximum length, \(\dim(R) \), in \(R \).) It is conjectured that in all local rings, whenever \(\dim(R_P) + \dim(R_P) = \dim(R) \), one has that \(e(R_P) \leq e(R) \).

In studying this problem, one is naturally led to Lech’s Conjecture. The result on localization is true if \(R \) is excellent (and under various weaker hypotheses), but, so far as I know, remains open in the general case. It would follow, however, from a proof of Lech’s Conjecture, which permits a reduction to the case where the ring is complete.

First note:

Lemma. Let \(P \) be a prime ideal of a local ring \(R \). Then:

(a) For every minimal prime \(Q \) of \(P\hat{R} \), height \((Q) = \text{height (P)} \).

(b) If \(\dim(R/P) + \dim(R_P) = \dim(R) \), then there exists a minimal prime \(Q \) of \(PR \) such that \(\dim(\hat{R}/Q) + \dim(\hat{R}_Q) = \dim(R) \).

(c) If \(\hat{R}/P \) is reduced, then with \(Q \) as in part (b) we have that \(e(R_P) = e(\hat{R}_Q) \).

Proof. (a) \(R_P \to \hat{R}_Q \) is faithfully flat, so that \(\dim(\hat{R}_Q) \geq \dim(R_P) \). The minimality of \(Q \) implies that \(PR_P \) expands to a \(Q\hat{R}_Q \)-primary ideal in \(\hat{R}_Q \), so that a system of parameters for \(R_P \) will be a system of parameters for \(\hat{R}_Q \) as well.
For (b), note that the completion of R/P, which is $\hat{R}/P\hat{R}$, has the same dimension as R/P, and so has a minimal prime, say $Q/P\hat{R}$, where Q is prime in \hat{R}, such that $\dim(\hat{R}/Q) = \dim(\hat{R}/P\hat{R}) = \dim(R/P)$. By part (a), $\dim(\hat{R}_Q) = \dim(R_P)$ as well.

To prove (c), observe that if \hat{R}/P is reduced, then so is $\hat{R}_Q/P\hat{R}_Q$, which means that PR_P expands to the maximal ideal in \hat{R}_Q. The equality of multiplicities then follows from the Proposition on p. 6 of the Lecture Notes of October 20. □

Our next objective, which will take a while, is to prove the following:

Theorem (localization theorem for multiplicities). If P is a prime ideal of a complete local ring R such that $\dim (R/P) + \dim (R_P) = \dim (R)$, then $e(R_P) \leq e(R)$.

Assuming this for the moment, we have several corollaries.

Corollary. If P is a prime of a local ring R such that $\dim (R/P) + \dim (R_P) = \dim (R)$ and the completion of R/P is reduced,\(^1\) then $e(R_P) \leq e(R)$.

Proof. Choose a minimal prime Q of $P\hat{R}$ such that $\dim(\hat{R}/Q) + \dim(\hat{R}_Q) = \dim(\hat{R})$, as in part (b) of the Lemma. Then by part (c),

$$e(R_P) = e(\hat{R}_Q) \leq e(\hat{R}) = e(R).$$

Corollary. If Lech’s conjecture holds, then for every prime P of a local ring R such that $\dim (R/P) + \dim (R_P) = \dim (R)$, $e(R_P) \leq e(R)$.

Proof. Choose Q as in part (b) of the Lemma. Then $R_P \to \hat{R}_Q$ is flat local, and so by Lech’s conjecture

$$e(R_P) \leq e(\hat{R}_Q) \leq e(\hat{R}) = e(R). \quad \square$$

We also get corresponding results for modules.

Corollary. If R is a local ring, M a finitely generated R-module, and P is a prime of the support of M such that $\dim (R/P) + \dim (M_P) = \dim (M)$, then:

(a) If the completion of R/P is reduced, then $e(M_P) \leq e(M)$.

(b) If Lech's conjecture holds, then $e(M_P) \leq e(M)$.

Proof. Note that we can replace R by $R/\text{Ann}_R M$, so that we may assume that M is faithful and $\dim (R) = \dim (M) = d$, say. Note that M is faithful if and only if for some (equivalently, every) finite set of generators u_1, \ldots, u_h for M, the map $R \to M^{\oplus h}$ such

\(^1\)This is always true if R is excellent: the completion of an excellent reduced local ring is reduced.
that \(r \mapsto (ru_1, \ldots, ru_h) \) is injective. This condition is obviously preserved by localization. Now,

\[
\text{(*) } e(M) = \sum_{1 \leq i \leq h, \dim(R/P_i) = d} \ell_{R_{P_i}}(M_{P_i})e(R/P_i).
\]

Note that once we have that \(M \) is faithful, \(\dim(R/P) + \dim(M_P) = \dim(M) \) is equivalent to \(\dim(R/P) + \dim(R_P) = \dim(R) \), since \(M_P \) is faithful over \(R_P \). The minimal primes of \(M \) and \(R \) are the same, and so are the minimal primes of \(M_P \) and \(R_P \): the latter correspond to the minimal primes of \(R \) that are contained in \(P \). There is a formula like (*) for \(e(M_P) \), where the summation is extended over minimal primes \(p \) of the support of \(M_P \), i.e., of \(R_P \), such that \(\dim(R/P) / p = \dim(M_P) \), which is \(\dim(R_P) \). Let \(p \) be such a minimal prime. Then there is a chain of primes from \(p \) to \(P \) of length \(\text{height}(P) \), and this can be concatenated with a chain of primes of length \(\dim(R/P) \) from \(P \) to \(m \), producing a chain of length \(\dim(R) \). It follows that \(\dim(R/P) \geq d \), and the other inequality is obvious. Therefore, \(p \) is one of the \(P_i \). Moreover, in \(R/P_i \), we still have

\[
\dim \left(\frac{(R/P_i)}{(P/P_i)} \right) + \text{height} \left(\frac{(R/P_i)}{P/P_i} \right) = \dim(R/P_i) = d.
\]

Thus, the terms in the formula corresponding to (*) for \(M_P \) correspond to a subset of the the terms occurring in (*), but have the form

\[
\ell_{R_{P_i}}(M_{P_i})e(R/P_i)R_{P_i}.
\]

Note that each \(P_i \) occurring is contained in \(P \), and localizing first at \(P \) and then at \(P_i R_P \) produces the same result as localizing at \(P_i \). Using either (a) or (b), whichever holds, we have that every \(e((R/P_i)P) \leq e(R/P_i) \). □

We next want to understand multiplicities in the hypersurface case.

Theorem. Let \((R, m, K)\) be a regular local ring of dimension \(d \) and let \(f \in m \). Let \(S = R/fR \). The \(e(S) \) is the \(m \)-adic order of \(f \), i.e., the unique integer \(k \) such that \(f \in m^k - m^{k+1} \).

Proof. We use induction on \(\dim(R) \). If \(\dim(R) = 1 \) the result is obvious. Suppose \(\dim(R) > 1 \). We replace \(R \) by \(R(t) \) if necessary so that we may assume the residue class field is infinite. Choose a regular system of parameters \(x_1, \ldots, x_d \) for \(R \). By replacing these by linearly independent linear combinatons we may assume that \(x_1 \) is such that

1. \(x_1 \) does not divide \(f \), so that the image of \(x_1 \) is not a zerodivisor in \(S \).
2. The image of \(x_1 \) in \(m/m^2 \) does not divide the leading form of \(f \) in \(\text{gr}_m(R) \).
3. The image of \(x_1 \) in \(S \) is part of a minimal set of generators for a minimal reduction of \(m/fR \), the maximal ideal of \(S \).

Let \(\pi \) be the image of \(x_1 \) in \(S \). Then \(e(S) = e(S/\pi S) \), and this is the quotient of the regular ring \(R/x_1 R \) by the image of \(f \). Moreover, the \((m/x_1 R)\)-adic order of the image of
Theorem (symbolic powers in regular rings). Let R be a regular ring. Then $R^{(n)} \subseteq Q^{(n)}$ for every positive integer n.

We next want to reduce the problem of proving the localization result for complete local domains to proving the following statement:

Theorem (symbolic powers in regular rings). Let $P \subseteq Q$ be prime ideals of a regular ring R. Then $P^{(n)} \subseteq Q^{(n)}$ for every positive integer n.

We postpone the proof for the moment. Note, however, that one can reduce at once to the local case, where Q is the maximal ideal, by working with (R_Q, Q_R) instead of R.

Discussion: the symbolic power theorem for regular rings implies that multiplicities do not increase under localization. Let R be a complete local, and let P be a prime ideal of R such that $\dim (R/P) + \text{height } (R_P) = \dim (R)$. We want to show that $e(R_P) \leq e(R)$. Exactly as in the discussion of the module case in the proof of the Corollary, one can reduce to the case where R is a domain. As usual, one may assume without loss of generality that the residue field is sufficiently large for R to have a system of parameters x_1, \ldots, x_d that generates a minimal reduction of m. Then in the equicharacteristic case (respectively, the mixed characteristic case), we can map $K[[X_1, \ldots, X_d]] \to R$ (respectively, $V[[X_1, \ldots, X_d]] \to R$), where $K \subseteq R$ (respectively $V \subseteq R$) is a coefficient field (respectively, a complete DVR that is a coefficient ring) and so that $X_i \mapsto x_i$, $1 \leq i \leq d$. In both cases, R is module-finite over the image A: in the equicharacteristic case, $A = K[[x_1, \ldots, x_d]]$ is regular, while in mixed characteristic the kernel of $V[[X_1, \ldots, X_d]] \to R$ must be a height one prime, and therefore principle, so that $A \cong V[[x_1, \ldots, x_d]]/(f)$. Since the maximal ideal of R is integral over $(x_1, \ldots, x_d)R$ and R is module-finite over A, the maximal ideal of A is also integral over $(x_1, \ldots, x_d)A$. Let ρ denote the torsion-free rank of R as an A-module, which is the same as the degree of the extension of fraction fields. Suppose that P is a prime of R and let p be its contraction to A. Let I be the ideal $(x_1, \ldots, x_d)A$. Then $e(R) = e_{1/R}(R)$, which is the same as $e_{I}(R)$ with R thought of as an A-module. This is $\rho e(I)(A) = \rho e(A)$. The result on symbolic powers gives the result on localization of multiplicities for $A = T/(f)$, when T is regular: one multiplicity is the order of f in T with respect to the maximal ideal, while the other is the order of f in a localization of T. (In the equicharacteristic case, both A and its localization are regular, and both multiplicities are 1.) Thus, $\rho e(A_p) \leq \rho e(A) = e(R)$. But we shall see in the sequel that $e(R_P) \leq e_p(R_p)$, with R_p is viewed as an A_p module. Since R is module-finite over A, R_p is module-finite over A_p, and R_p/p^nR_p is an Artin ring, and is a product of local rings one of which is $R_p/(p^nR_p)$. Then

$$\ell_{A_p}(R_p/p^nR_p) \geq \ell_{A_p}(R_P/p^nR_P) \geq \ell_{A_p}(R_P/P^nR_P) \geq \ell_{R_P}(R_P/P^nR_P)$$

for all n, so that the multiplicity of R_p as an A_p-module is greater than or equal to $e(R_P)$. But then

$$e(R_P) \leq e_p(R_p) = \rho e(A_p) \leq \rho e(A) = e(R),$$

as required. □

Thus, all that remains is to prove the theorem on symbolic powers in regular rings.