We want to establish that in the twisted tensor product of two \(\mathbb{Z}_d \)-graded \(K \)-algebras, \(C \otimes_K C' \), one has that if \(u \in C \) and \(v \in C' \) are forms of degree 1, then

\[
(u \otimes 1 + 1 \otimes v)^d = u^d \otimes 1 + 1 \otimes v^d,
\]
a property reminiscent of the behavior of the Frobenius endomorphism in the commutative case. In order to prove this, we need to develop a “twisted” binomial theorem.

To this end, let \(\tilde{q}, \tilde{U}, \) and \(\tilde{V} \) be non-commuting indeterminates over \(\mathbb{Z} \) and form the free algebra they generate modulo the relations

\begin{align*}
(1) & \quad \tilde{q} \tilde{U} = \tilde{U} \tilde{q} \\
(2) & \quad \tilde{q} \tilde{V} = \tilde{V} \tilde{q} \\
(3) & \quad \tilde{V} \tilde{U} = \tilde{q} \tilde{U} \tilde{V}
\end{align*}

We denote the images of \(\tilde{q}, \tilde{U}, \) and \(\tilde{V} \) by \(q, U, \) and \(V, \) respectively. Thus, \(q \) is in the center of quotient ring \(A \). While \(U \) and \(V \) do not commute, it is clear that every monomial in \(U \) and \(V \) may be rewritten in the form \(q^i U^j V^k \), with \(i, j, k \in \mathbb{N} \), in this ring. In fact, \(A \) is the free \(\mathbb{Z} \)-module spanned by these monomials, with the multiplication

\[
(q^i U^j V^k)(q'^i' U'^j' V'^k') = q^{i+i'} U^{j+j'} V^{k+k'}.
\]

This is forced by iterated use of the relations (1), (2), and (3), and one can check easily that this gives an associative multiplication on the free \(\mathbb{Z} \)-module on the monomials \(q^i U^j V^k \).

In this algebra, one may calculate \((U + V)^d \) and write it as a linear combination of monomials \(U^i V^j \) each of whose coefficients is a polynomial in \(\mathbb{Z}[q] \). When \(q \) is specialized to 1, the coefficients simply become ordinary binomial coefficients. We want to investigate these coefficients, which are called Gaussian polynomials, Gaussian coefficients, or \(q \)-binomial coefficients. We shall denote the coefficient of \(U^k V^{d-k} \), \(0 \leq i \leq d \), as \(\left[\begin{array}{c} d \\ k \end{array} \right]_q \).

For example,

\[
(U + V)^2 = V^2 + UV + VU + U^2 = V^2 + (q + 1)UV + V^2,
\]

and so \(\left[\begin{array}{c} 2 \\ 0 \end{array} \right]_q = \left[\begin{array}{c} 2 \\ 2 \end{array} \right]_q = 1 \) while \(\left[\begin{array}{c} 2 \\ 1 \end{array} \right]_q = q + 1 \).

Theorem (twisted binomial theorem). Let notation be as above.

(a) The coefficient polynomials \(\left[\begin{array}{c} d \\ k \end{array} \right]_q \) are determined recursively by the rules
\[
\begin{align*}
(1) \quad & \binom{d}{0}_q = \binom{d}{d}_q = 1 \text{ and} \\
(2) \quad & \binom{d+1}{k+1}_q = \binom{d}{k}_q + q^{k+1} \binom{d}{k+1}_q.
\end{align*}
\]

(b) For all \(d\) and \(k\), \(\binom{d}{k}_q = \prod_{i=0}^{k-1} \frac{1 - q^{d-i}}{1 - q^{i+1}}\).

(c) Let \(\lambda, u, v\) be elements of any associative ring \(R\) with identity such that \(\lambda\) commutes with \(u\) and \(v\) and \(vu = \lambda uv\). Let \(\binom{d}{k}(\lambda)_q\) denote the element of \(R\) that is the image of \(\binom{k}{d}_q\) under the map \(\mathbb{Z}[q] \to R\) that sends \(q \mapsto \lambda\). Then

\[
(u + v)^d = \sum_{k=0}^{d} \binom{d}{k}(\lambda)_q u^k v^{d-k}.
\]

Proof. For part (a), first note that it is evident that the coefficients of \(V^d\) and \(U^d\) in the expansion of \((U + V)^d\) are both 1. Now \((U + V)^{d+1} = (U + V)(U + V)^d\), and it is clear that there are two terms in the expansion that contribute to the coefficient of \(U^{k+1}V^{d-k}\): one is the product of \(U\) with the \(U^{k+1}V^{d-k}\) term in \((U + V)^d\), which gives \(\binom{d}{k} U^{k+1}V^{d-k}\), and the other is the product of \(V\) with the \(U^{k+1}V^{d-k-1}\) term, which gives \(\binom{d}{k+1} V U^{k+1}V^{d-k-1}\). Since \(VU^{k+1} = q^{k+1}U^{k+1}V\), the result follows.

For part (b), it will suffice to show that the proposed expressions for the \(\binom{d}{k}_q\) satisfy the recursion in part (a), that is:

\[
\prod_{i=0}^{k} \frac{1 - q^{d+1-i}}{1 - q^{i+1}} = \prod_{i=0}^{k-1} \frac{1 - q^{d-i}}{1 - q^{i+1}} + q^{k+1} \prod_{i=0}^{k} \frac{1 - q^{d-i}}{1 - q^{i+1}}.
\]

We can clear denominators by multiplying by the denominator of the left hand term to get the equivalent statement:

\[
(*) \quad \prod_{i=0}^{k} (1 - q^{d+1-i}) = (1 - q^{k+1}) \prod_{i=0}^{k-1} (1 - q^{d-i}) + q^{k+1} \prod_{i=0}^{k} (1 - q^{d-i}).
\]

The left hand term may be rewritten as

\[
\prod_{j=-1}^{k-1} (1 - q^{d-j}) = (1 - q^{d+1}) \prod_{i=0}^{k-1} (1 - q^{d-i}).
\]
We may divide both sides of \((\ast)\) by
\[
\prod_{i=0}^{k-1} (1 - q^{d-i})
\]
to see that \((\ast)\) is equivalent to
\[
1 - q^{d+1} = 1 - q^{k+1} + q^{k+1}(1 - q^{d-k}),
\]
which is true.

Part (c) follows at once, for there is a homomorphism of
\[A = \mathbb{Z}[q, U, V] \rightarrow \mathbb{R} \]
such that \(q \mapsto \lambda, U \mapsto u\) and \(V \mapsto v\). □

Recall that the \(d\)th cyclotomic polynomial \(\Psi_d(t)\), \(d \geq 1\), is the minimal polynomial of a primitive \(d\)th root of unity over \(\mathbb{Q}\). It is a monic polynomial with coefficients in \(\mathbb{Z}\) and irreducible over \(\mathbb{Z}\) and \(\mathbb{Q}\). The degree of \(\Psi_d(t)\) is the Euler function \(\Phi(d)\), whose value is the number of units in \(\mathbb{Z}_d\). If \(d = p_1^{k_1} \cdots p_h^{k_h}\) is the prime factorization of \(d\), where the \(p_i\) are mutually distinct, then
\[
\Phi(d) = \prod_{j=1}^{h} (p_j^{k_j} - p_j^{k_j-1}).
\]
The polynomials \(\Psi_d(t)\) may be found recursively, using the fact that
\[
t^d - 1 = \prod_{a|d} \Psi_a(t),
\]
where \(a\) runs through the positive integer divisors of \(d\). We next observe:

Corollary. For every \(d\) and \(1 \leq k \leq d - 1\), \(\Psi_d(q)\) divides \(\left[\begin{array}{c}d \\ k\end{array}\right]_q\) in \(\mathbb{Z}[q]\).

Proof. Let \(\xi\) be a primitive \(d\)th root of unity in \(\mathbb{C}\). It suffices to show that \(\left[\begin{array}{c}d \\ k\end{array}\right]_q(\xi) = 0\).

This is immediate from the formula in part (b) of the Theorem, since one of the factors in the numerator, corresponding to \(i = 0\), is \(q^d - 1\), which vanishes when \(q = \xi\), while the exponents on \(q\) in the factors in the denominator vary between 1 and \(k < d\), and so the denominator does not vanish when we substitute \(q = \xi\). □

Corollary. In the twisted tensor product \(C \otimes C'\) of two \(\mathbb{Z}_d\)-graded \(K\)-algebras, if \(u\) is any form of degree 1 in \(C\) and \(v\) is any form of degree 1 in \(C'\), then \((u \otimes 1 + 1 \otimes v)^d = u^d \otimes 1 + 1 \otimes_d v^d\).

Proof. By the preceding Corollary, all the \(q\)-binomial coefficients of the terms involving both \(u \otimes 1\) and \(1 \otimes v\) vanish. □
Theorem. Let \(f \) and \(g \) be forms of degree \(d \) over a field \(K \) in disjoint sets of variables, say \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_m \). Then there is a surjective \(\mathbb{Z}_d \)-graded \(K \)-algebra homomorphism \(C(f + g) \to C(f) \otimes_K C(g) \). Hence, if \(M \) is a Clifford module over \(C(f) \) and \(N \) is a Clifford module over \(C(g) \), then the twisted tensor product \(M \otimes_K N \) is a Clifford module over \(C(f + g) \).

Proof. Let \(V \) be the dual of the \(K \)-span of \(X_1, \ldots, X_n \), with dual \(K \)-basis \(e_1, \ldots, e_n \), and let \(V' \) the dual of the \(K \)-span of \(Y_1, \ldots, Y_m \), with dual basis \(e'_1, \ldots, e'_m \). Then \(C(f + g) \) is the quotient of \(T(V \oplus V') \) by the two-sided ideal generated by all relations of the the form

\[
(c_1 e_1 + \cdots + c_n e_n + c'_1 e'_1 + \cdots + c'_m e'_m)^d - f(c_1, \ldots, c_n) - g(c'_1, \ldots, c'_m),
\]

where \(c = c_1, \ldots, c_n \in K \) and \(c' = c'_1, \ldots, c'_m \in K \). The maps \(T(V) \to C(f) \) and \(T(V') \to C(g) \) will induce a map \(C(f + g) \to C(f) \otimes_K C(g) \) provided that each of the relations \((*)\) maps to 0 in \(C(f) \otimes_K C(g) \). With

\[
u = c_1 e_1 + \cdots + c_n e_n
\]

and

\[
v = c'_1 e'_1 + \cdots + c'_m e'_m,
\]

we have that

\[
(v \otimes 1)(u \otimes 1) = \xi (u \otimes 1)(1 \otimes v)
\]

in the twisted tensor product, and so \((u + v)^d\) maps to \(u^d \otimes 1 + 1 \otimes v^d \). Thus, the element displayed in \((*)\) maps to

\[
u^d \otimes 1 + 1 \otimes v^d - f(c)(1 \otimes 1) - g(c')(1 \otimes 1) = (u^d - f(c)) \otimes 1 + 1 \otimes (v^d - g(c')) = 0 + 0 = 0,
\]

as required. \(\square \)

We now use these ideas to get a matrix factorization for a generic form. In a sense, we carry this out over the field \(\mathbb{Q}[\xi] \), but we observe that the entries of the matrices are actually in \(\mathbb{Z}[\xi] \). We then embed \(\mathbb{Z}[\xi] \) in a ring of matrices over \(\mathbb{Z} \) to get a solution over \(\mathbb{Z} \). This result gives the a version of the theorem over any ring, by applying a suitable homomorphism.

We first introduce two notations. If \(\alpha_1, \ldots, \alpha_d \) are square matrices, then \(\text{diag}(a_1, \ldots, a_d) \) denotes the square matrix whose size is the sum of the sizes of the \(\alpha_1, \ldots, \alpha_d \), and whose block form is

\[
\begin{pmatrix}
\alpha_1 & 0 & 0 & \cdots & 0 \\
0 & \alpha_2 & 0 & \cdots & 0 \\
0 & 0 & \alpha_3 & \cdots & 0 \\
& & & \ddots & \\
0 & 0 & 0 & \cdots & \alpha_d
\end{pmatrix}
\]
This matrix corresponds to the direct sum of the maps represented by the \(\alpha_1, \ldots, \alpha_d \).

When \(\alpha_1, \ldots, \alpha_d \) are square matrices of the same size, say \(s \), we write \(\text{cyc}(\alpha_1, \ldots, \alpha_d) \) for the matrix whose block form is

\[
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 & \alpha_1 \\
\alpha_d & 0 & 0 & \cdots & 0 & 0 \\
0 & \alpha_{d-1} & 0 & \cdots & 0 & 0 \\
& & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \cdots & \alpha_2 & 0
\end{pmatrix}
\]

Here “cyc” stands for “cyclic.” One may think about this matrix as follows. Suppose that the \(\alpha_i \) are thought of as linear transformations on a vector space \(V \) of dimension \(s \) over \(K \). Let \(V_i = V, 1 \leq i \leq d \), and let \(W = V^{\oplus d} \) thought of as \(V_1 \oplus \cdots \oplus V_d \). Then \(\text{cyc}(\alpha_1, \ldots, \alpha_d) \) corresponds to the linear transformation of \(V \) whose restriction to \(V_i \) is given by \(\alpha_{d+1-i} : V_i \to V_{i+1} \). The subscript \(i \) should be read modulo \(d \), so that the restriction to \(V_d \) is \(\alpha_1 : V_d \to V_1 \). Thus, \((\text{cyc}(\alpha_1, \ldots, \alpha_d))^d \), when restricted to \(V_i \), is the composite

\[
(V_{i-1} \xrightarrow{\alpha_{d+1-(i-1)}} V_i) \circ \cdots \circ (V_{i+1} \xrightarrow{\alpha_{d-i}} V_{i+2}) \circ (V_i \xrightarrow{\alpha_{d+1-i}} V_{i+1}),
\]

i.e.,

\[
\alpha_{d+2-i} \alpha_{d+3-i} \cdots \alpha_d \alpha_1 \cdots \alpha_{d-i} \alpha_{d+1-i}.
\]

Hence, if \(\alpha_1, \ldots, \alpha_d \) is a matrix factorization of \(f \) of size \(s \), one also has a matrix factorization of \(f \) of size \(ds \) with \(d \) factors all of which are equal to \(\text{cyc}(\alpha_1, \ldots, \alpha_d) \).

Theorem. Let \(d \geq 2 \) and \(s \geq 1 \) be integers, and let \(f \) denote the degree \(d \) linear form over \(\mathbb{Z} \) in \(sd \) variables given as

\[
f = X_{1,1}X_{1,2} \cdots X_{1,d} + \cdots + X_{s,1}X_{s,2} \cdots X_{s,d}.
\]

Note that \(f \) is the sum of \(s \) products of \(d \) variables, where all of the variables that occur are distinct. Let \(\xi \) be a primitive \(d \)th root of unity. Then \(f \) has a matrix factorization \(f\text{I}_{d-1} = \alpha_1 \cdots \alpha_d \) over

\[
R = \mathbb{Z}[\xi][X_{ij} : 1 \leq i \leq s, 1 \leq j \leq d]
\]

of size \(s^{d-1} \) such that \(I(\alpha) = (X_{ij} : 1 \leq i \leq s, 1 \leq j \leq d)R \). Moreover, every entry of every matrix is either 0 or of the form \(\xi^k X_{ij} \).

Proof. We use induction on \(s \). We construct the factorization over \(\mathbb{Q}[\xi] \), but show as we do so that the entries of the matrices constructed are in \(\mathbb{Z}[\xi] \).

If \(s = 1 \) we have that

\[
(x_{1,1}x_{1,2} \cdots x_{1,d}) = (x_{1,1})(x_{1,2}) \cdots (x_{1,d}).
\]
By part (b) of the Proposition on p. 3 of the Lecture Notes of November 13, we have a corresponding Clifford module.

Now suppose that we have constructed a matrix factorization β_1, \ldots, β_d of size d^{s-1} for

$$f_1 = X_{11}X_{12} \cdots X_{1d} + \cdots + X_{s-1,1}X_{s-1,2} \cdots X_{s-1,d}$$

that satisfies the conditions of the theorem. Let M be the corresponding Clifford module. We also have a factorization for $g = x_{s,1} \cdots x_{s,d}$, namely

$$(x_{s,1}x_{s,2} \cdots x_{s,d}) = (x_{s,1})(x_{s,2}) \cdots (x_{s,d}).$$

Since the two sets of variables occurring in f_1 and g respectively are disjoint, the twisted tensor product $M \otimes_K N$, where $K = \mathbb{Q}[\xi]$, of the corresponding Clifford modules is a Clifford module Q over $C(f_1 + g) = C(f)$, by the Theorem at the top of p. 4 of today’s Lecture Notes. Note that each N_j has dimension 1, and that

$$(*) \quad Q_i = M_{i-1} \otimes_K N_1 \oplus M_{i-2} \otimes_K N_2 \oplus \cdots \oplus M_i \otimes_K N_d$$

has dimension s^{d-1}. Then Q gives a matrix factorization of $f = f_1 + g$ of size d^{s-1} over $\mathbb{Q}[\xi]$.

However, we shall give explicit bases for the Q_i, and show that the matrices that occur have entries of the form specified in the statement of the theorem, which shows that one has a matrix factorization over $\mathbb{Z}[\xi]$. We use all the tensors of pairs of basis elements, one from one of the M_i and one from one of the N_j but order the basis for Q_i as indicated in the direct sum displayed in ($*$) above. The result is that the map from $Q_i \rightarrow Q_{i+1}$ that comes from multiplication by $c_{1,1}e_{1,1} + \cdots + c_{s-1,d}e_{s-1,d}$ (the indexing on the scalars $c_{i,j}$ corresponds to the indexing on the variables $X_{i,j}$) has as its matrix the result obtained by substituting the $c_{i,j}$ for the $X_{i,j}$ in $\text{diag}(\beta_{d+1-i-1}, \beta_{d+1-i-2}, \cdots, \beta_{d+1-i})$, for the map is the direct sum of the maps $M_{i-j} \otimes_K N_j \rightarrow M_{i-j+1} \otimes_K N_j$ induced by the maps $M_{i-j} \rightarrow M_{i-j+1}$.

On the other hand, the map from $Q_i \rightarrow Q_{i+1}$ given by multiplication by $c_1' e_1' + \cdots c_d'e_d'$ maps the jth term $M_{i-j} \otimes_K N_j$ to the $j + 1$st term $M_{i-j} \otimes_K N_{j+1}$, and corresponds to multiplication by $\xi^{i-j}X_{s,d+1-j}$ evaluated at (c') on the summand $M_{i-j} \otimes_K N_{j}$, which has K-vector space dimension d^{s-2}. The result γ_{d+1-i} is the matrix

$$\text{cyc}(\xi^{-d}X_{s,1}I_{d^s-2}, \xi^{-(d-1)}X_{s,2}I_{d^s-2}, \ldots, \xi^{i-1}X_{s,1}I_{d^s-2}).$$

Therefore, we get a matrix factorization of f with d factors of size d^{s-1} in which

$$\alpha_i = \text{diag}(\beta_{i-1}, \beta_{i-2}, \cdots, \beta_i) + \gamma_i.$$

Since all of the coefficients needed are 0 or powers of ξ, this is a factorization over $\mathbb{Z}[\xi]$. All of the variables occur, possibly with coefficient ξ^k, but ξ is a unit in $\mathbb{Z}[\xi]$, and so all of the conditions of the theorem are satisfied. \square