1. R is a ring and W is a multiplicative system in R.
 (a) Suppose that $R \subseteq S$ is a ring extension. Let R' be the integral closure of R in S. Show that the integral closure of $W^{-1}R$ in $W^{-1}S$ is $W^{-1}R'$.
 (b) Let I be an ideal of R. Show that $\tilde{IW}^{-1}\tilde{R} = \tilde{IW}^{-1}R$.

2. Let R be a reduced ring with finitely many minimal primes P_1, \ldots, P_n. For $1 \leq i \leq n$, let D_i be R/P_i, let L_i be the fraction field of D_i, and let D_i' be the integral closure of D_i in L_i. Show that the total quotient ring of R is isomorphic with $T = \prod_{i=1}^n L_i$ and that the integral closure of R in T is isomorphic with $\prod_{i=1}^n D_i'$. (Note that this always applies when R is a reduced Noetherian ring.)

3. Let $R = K[x_1, \ldots, x_n]$ be the polynomial ring in n variables over a field K. If $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$, let x^a denote $x_1^{a_1} \cdots x_n^{a_n}$. The ideals I of R generated by monomials correspond bijectively to the subsets $H \subseteq \mathbb{N}^n$ with the property that if $a \in H$ and $b \geq a$ in the sense that $b_i \geq a_i$ for all i, then $b \in H$. Sets $H \subseteq \mathbb{N}^n$ with this property are called semigroup ideals of \mathbb{N}^n. Under the bijection, I is the K-vector space span of $\{x^a : a \in H\}$, and H is the set $\{a \in \mathbb{N} : x^a \in I\}$. (You may assume this bijection.) Show that the integral closure of the ideal corresponding to H is a monomial ideal, and corresponds to H', where H' is the intersection of H with the convex hull of H over the rational numbers \mathbb{Q}.

4. Let K be a finite field with q elements, let $T = K[[X,Y]]$, a formal power series ring in two variables over K, and let $f \in T$ have leading (i.e., lowest degree) form equal to $XY(X^{q-1} - Y^{q-1})$ (which is divisible by all forms of degree one in $K[X,Y]$). Let $R = K[[X,Y]]/(f) = K[[x,y]]$. Show that the analytic spread of the maximal ideal m of R is 1, but that m has no reduction with just one generator.

5. Let (R, m, K) be a local domain. Show that there is a DVR (V, m_V) such that $R \subseteq V$ and $m \subseteq m_V$. (Show that R embeds in $\tilde{R}/P = S$, where P is minimal, and this ring is module-finite over a complete regular local ring A. Solve the problem for A and complete the DVR to get, say, W. Normalize $W[S]$.)

6. Let (R, m, K) be a local domain and let $I \subseteq m$ be an ideal.
 Suppose that $x \in R$ is not in the integral closure of I.
 (a) Consider the ring $R[I/x]$ generated by all fractions with numerator in I and denominator x. Show that there is a maximal ideal Q of this ring containing m and all the elements of I/x, and let (T, n) be the localization of this ring at Q. Then m and all elements of $I/x = \{i/x : i \in I\}$ are in n.
 (b) By #5, there is a DVR V with $T \subseteq V$ whose valuation v is nonnegative on T and positive on n. Show that v is positive on m but takes a smaller value on x than on any element of I.

Conclude from the statements above that the integral closure of I is an intersection of m-primary integrally closed ideals.