We want to use the theory of strongly F-regular F-finite rings to prove the existence of test elements.

We first prove two preliminary results:

Lemma. Let R be an F-finite reduced ring and $c \in R^\circ$ be such that R_c is F-split (which is automatic if R_c is strongly F-regular). Then there exists an R-linear map $\theta : R^{1/p} \to R$ such that the value on 1 is a power of c.

Proof. We can choose an R_c-linear map $(R_c)^{1/p} \to R_c$ such that $1 \mapsto 1$, and $(R_c)^{1/p} \simeq (R^{1/p})_c$.

Then $\text{Hom}_{R_c}(R_c^{1/p}, R_c)$ is the localization of $\text{Hom}_R(R^{1/p}, R)$ at c, and so we can write $\theta = \frac{1}{c^N} \alpha$, where $N \in \mathbb{N}$ and $\alpha : R^{1/p} \to R$ is R-linear. But then $\alpha = c^N \beta$ and so $\alpha(1) = c^N \beta(1) = c^N$, as required. \qed

Lemma. Let R be a reduced F-finite ring and suppose that there exists an R-linear map $\theta : R^{1/p} \to R$ such that $\theta(1) = c \in R^\circ$. Then for every $q = p^e$, there exists an R-linear map $\eta_q : R^{1/q} \to R$ such that $\eta_q(1) = c^2$.

Proof. We use induction on q. If $q = 1$ we may take $\eta_1 = c^2 1_R$, and if $q = p$ we may take $\eta_p = c \theta$. Now suppose that η_q has been constructed for $q \geq p$. Then $\eta_q^{1/p} : R^{1/pq} \to R^{1/p}$, it is $R^{1/p}$-linear, hence, R-linear, and its value on 1 is $c^{2/p}$. Define

$$\eta_{pq}(u) = \theta(c^{(p-2)/p} \eta_q(u)).$$

Consequently, we have, as required, that

$$\eta_{pq}(1) = \theta(c^{(p-2)/p} \eta_q(1)) = \theta(c^{(p-2)/p} c^{2/p}) = \theta(c) = c \theta(1) = c^2. \quad \square$$

We can now prove the following:

Theorem (existence of big test elements). Let R be F-finite and reduced. If $c \in R^\circ$ and R_c is strongly F-regular, then c has a power that is a big test element. If R_c is strongly F-regular and there exists an R-linear map $\theta : R^{1/p} \to R$ such that $\theta(1) = c$, then c^3 is a big test element.

Proof. Since R_c is strongly F-regular it is F-split. By the first Lemma on p. 1 there exist an integer N and an R-linear map $\theta : R^{1/p} \to R$ such that $\theta(1) = c^N$. By the second
Suppose that \(c \) satisfies the hypothesis of the second statement. By part (a) of the Proposition at the bottom of p. 8 of the Lecture Notes of September 17, it suffices to show that if \(N \subseteq M \) are arbitrary modules and \(u \in N^1_M \), then \(c^3 u \in N \). We may map a free module \(G \) onto \(M \), let \(H \) be the inverse image of \(N \) in \(G \), and let \(v \in G \) be an element that maps to \(u \in N \). Then we have \(v \in H^*_G \), and it suffices to prove that \(c^3 v \in H \). Since \(v \in H^*_G \) there exists \(d \in R^2 \) such that \(dv^q \in H^{[q]} \) for all \(q \geq q_1 \). Since \(R_c \) is strongly F-regular, there exist \(q_d \) and an \(R_c \)-linear map \(\beta : (R_c)^{1/q_d} \to R_c \) that sends \(d^{1/q_d} \to 1 \): we may take \(q_d \) larger, if necessary, and so we may assume that \(q_d \geq q_1 \). As usual, we may assume that \(\beta = \frac{1}{c^q} \alpha \) where \(\alpha : R^{1/q_d} \to R \) is \(R \)-linear. Hence, \(\alpha = c^q \beta \), and \(\alpha(d^{1/q_d}) = c^q \). It follows that \(\alpha^{1/q} : R^{1/q_d} \to R^{1/q} \) is \(R^{1/q} \)-linear, hence, \(R \)-linear, and its value on 1 is \(c \). By the preceding Lemma we have an \(R \)-linear map \(\eta_q : R^{1/q} \to R \) whose value on 1 is \(c^2 \), so that \(\eta_q(c) = c \eta^q(1) = c^3 \). Let \(\gamma = \eta_q \circ \alpha^{1/q} \), which is an \(R \)-linear map \(R^{1/q_d} \to R \) sending \(d^{1/q_d} \) to \(\eta_q(c) = c^3 \). Since \(q_d q \geq q_1 \), we have \(dv^{q_d} \in H^{[q_d]} \), i.e.,

\[
(\#) \quad dv^{q_d} = \sum_{i=1}^n r_i h_i^q,
\]

for some integer \(n > 0 \) and elements \(r_1, \ldots, r_n \in R \) and \(h_1, \ldots, h_n \in H \).

Consider \(G' = R^{1/q_d} \otimes_R G \). We identify \(G \) with its image under the map \(G \to G' \) that sends \(g \mapsto 1 \otimes g \). Thus, if \(s \in R^{1/q_d} \), we may write \(sg \) instead of \(s \otimes g \). Note that \(G' \) is free over \(R^{1/q_d} \), and the \(R \)-linear map \(\gamma : R^{1/q_d} \to R \) induces an \(R \)-linear map

\[
\gamma' : G' = R^{q_d} \otimes_R G \to R \otimes_R G \cong G
\]

that sends \(sg \mapsto \gamma(s)g \) for all \(s \in R^{1/q_d} \) and all \(g \in G \). Note that by taking \(q_d q \) th roots in the displayed equation (\#) above, we obtain

\[
(\dagger) \quad d^{1/q_d} v = \sum_{i=1}^n r_i^{1/q_d} h_i.
\]

We may now apply \(\gamma' \) to both sides of (\dagger): we have

\[
c^3 v = \sum_{i=1}^n \gamma(r_i^{1/q_d}) h_i \in H,
\]

exactly as required. \(\square \)

Discussion. As noted on the bottom of p. 2 and top of p. 3 of the Lecture Notes of September 21, it follows that every F-finite reduced ring has a big test element: one can choose \(c \in R^o \) such that \(R_c \) is regular. This is a consequence of the fact that F-finite
rings are excellent. But one can give a proof of the existence of such elements c in F-finite rings of characteristic p very easily if one assumes that a Noetherian ring is regular if and only if the Frobenius endomorphism is flat (we proved the “only if” direction earlier). See [E. Kunz, Characterizations of regular local rings of characteristic p, Amer. J. Math. 91 (1969) 772–784]. Assuming the “if” direction, we may argue as follows. First note that one can localize at one such element c so that the idempotent elements of the total quotient ring of R are in the localization. Therefore, there is no loss of generality in assuming that R is a domain. Then $R^{1/p}$ is a finitely generated torsion-free R-module. Choose a maximal set s_1, \ldots, s_n of R-linearly independent elements in $R^{1/p}$. This gives an inclusion

$$R^n \cong R s_1 + \cdots + R s_n \subseteq R^{1/p}.$$

Call the cokernel C. Then C is finitely generated, and C must be a torsion module over R: if $s_{n+1} \in R^{1/p}$ represents an element of C that is not a torsion element, then s_1, \ldots, s_{n+1} are linearly independent over R, a contradiction. Hence, there exists $c \in R^e$ that kills C, and so $c R^{1/p} \subseteq R^n$. It follows that $(R^{1/p})_c \cong R^n_c$, and so $(R_c)^{1/p}$ is free over R_c. But this implies that F_{R_c} is flat, and so R_c is regular, as required. □

In any case, we have proved:

Corollary. If R is reduced and F-finite, then R has a big test element. Hence, $\tau_b(R)$ is generated by the big test elements of R, and $\tau(R)$ is generated by the test elements of R. □

Our next objective is to show that the big test elements produced by the Theorem on p. 1 are actually completely stable. In fact, we shall prove something more: they remain test elements after any geometrically regular base change, i.e., their images under a flat map $R \to S$ with geometrically regular fibers are again test elements.