Math 711: Lecture of October 26, 2007

It still remains to prove the final assertion of the Theorem from p. 3 of the Lecture Notes of October 22: that if R is F-finite and weakly F-regular, then R is strongly F-regular. Before doing so, we want to note some consequences of the theory of test elements, and also of the theory of approximately Gorenstein rings.

Theorem. Let (R, m, K) be a local ring of prime characteristic $p > 0$.

(a) If R has a completely stable test element, then \hat{R} is weakly F-regular if and only if R is weakly F-regular.

(b) If R has a completely stable big test element, then \hat{R} has the property that every submodule of every module is tightly closed if and only if R does.

Proof. We already know that if a faithfully flat extension has the relevant property, then R does. For the converse, it suffices to check that 0 is tightly closed in every finite length module over \hat{R} (respectively, in the injective hull E of the residue class field over \hat{R}, which is the same as the injective hull of the residue class field over R). A finite length \hat{R}-module is the same as a finite length R-module. We can use the completely stable (big, for part (b)) test element $c \in R$ in both tests, which are then bound to have the same outcome for each element of the modules. For a module M supported only at m,

$$\mathcal{F}_R^c(M) \cong \mathcal{F}_\hat{R}^c(\hat{R} \otimes_R M) \cong \hat{R} \otimes_R \mathcal{F}_R^c(M) \cong \mathcal{F}_R^c(M).$$

□

Proposition. Let R have a test element (respectively, a big test element) c and let $N \subseteq M$ be finitely generated (respectively, arbitrary) R-modules. Let $d \in R^\circ$ and suppose $u \in M$ is such that $cu^q \in N[3]_q$ for infinitely many values of q. Then $u \in N^*_M$.

Proof. Suppose that $du^q \in N[3]_q$ and that $p^{\epsilon_1} = q_1 < q$, so that $q = q_1q_2$. Then $(du^q)^{q_2} = d^{q_2-1}du^q \in (N[q_1])^{q_2} = N[q_1]$, and it follows that for all q_3, $(du^{q_3})^{q_2q_3} \in (N[q_1])^{q_2q_3}$. Hence, $du^{q_3} \in (N[q_1])^* \in \mathcal{F}_{\epsilon_1}(M)$ whenever $q_1 \leq q$. Hence, if $du^q \in N[3]_q$ for arbitrarily large values of q, then $du^q \in (N[3])^* \in \mathcal{F}_\epsilon(M)$ for all q and it follows that $cd\epsilon^{q_1} \in N[3]_q$ for all q, so that $u \in N^*_M$. □

Theorem. Let R be a Noetherian ring of prime characteristic $p > 0$.

(a) If every ideal of R is tightly closed, then R is weakly F-regular.

(b) If R is local and $\{I_t\}$ is a descending sequence of irreducible m-primary ideals cofinal with the powers of m, then R is weakly F-regular if and only if I_t is tightly closed for all $t \geq 1$.

1
Proof. (a) We already know that every ideal is tightly closed if and only if every ideal primary to a maximal ideal is tightly closed, and this is not affected by localization at a maximal ideal. Therefore, we may reduce to the case where \(R \) is local. The condition that every ideal is tightly closed implies that \(R \) is normal and, hence, approximately Gorenstein. Therefore, it suffices to prove (b). For (b), we already know that \(R \) is weakly F-regular if and only if 0 is tightly closed in every finitely generated \(R \)-module that is an essential extension of \(K \). Such a module is killed by \(I_t \) for some \(t > 0 \), and so embeds in \(E_{R/I_t}(K) \cong R/I_t \) for some \(t \). Since \(I_t \) is tightly closed in \(R \), 0 is tightly closed in \(R/I_t \), and the result follows. \(\square \)

We next want to establish a result that will enable us to prove the final assertion of the Theorem from p. 3 of the Lecture Notes of October 22.

Theorem. Let \((R, m, K)\) be a complete local ring of prime characteristic \(p > 0 \). If \(R \) is reduced and \(c \in R^o \), let \(\theta_{q,c} : R \to R^{1/q} \) denote the \(R \)-linear map such that \(1 \mapsto c^{1/q} \). Then the following conditions are equivalent:

1. Every submodule of every module is tightly closed.
2. 0 is tightly closed in the injective hull \(E = E_R(K) \) of the residue class field \(K = R/m \) of \(R \).
3. \(R \) is reduced, and for every \(c \in R^o \), there exists \(q \) such that the \(\theta_{q,c} \) splits.
4. \(R \) is reduced, and for some \(c \) that has a power which is a big test element for \(R \), there exists \(q \) such that \(\theta_{q,c} \) splits.
5. \(R \) is reduced, and for some \(c \) such that \(R_c \) is regular, there exists \(q \) such that \(\theta_{q,c} \) splits.

Proof. Note that all of the conditions imply that \(R \) is reduced.

We already know that conditions (1) and (2) are equivalent. Let \(u \) denote a socle generator in \(E \). Then we have an injection \(K \to E \) that sends 1 \(\mapsto u \), and we know that 0 is tightly closed in \(E \) if and only if \(u \) is in the tight closure of 0 in \(E \). This is the case if and only if for some \(c \in R^o \) (respectively, for a single big test element \(c \in R^o \)), \(cu^q = 0 \) in \(\mathcal{F}^c(E) \) for all \(q \gg 0 \). We may view \(\mathcal{F}^c(E) \) is identified with \(R^{1/q} \otimes_R E \), and \(u \) acts via the isomorphism \(R \cong R^{1/q} \) such that \(r \mapsto r^{1/q} \). Then \(u^q \) corresponds to \(1 \otimes u \), and \(cu^q \) corresponds to \(c^{1/q} \otimes u \).

Then \(u \in 0^c_E \) if and only if for every \(c \in R^o \) (respectively, for a single big test element \(c \in R^o \)), the map \(K \to R^{1/q} \otimes_R E \) that sends \(1 \mapsto c^{1/q} \otimes u \) is 0 for all \(q \gg 0 \). We may now apply the functor \(\text{Hom}_R(_ \otimes_R E, E) \) to obtain a dual condition. Namely, \(u \in 0^c_E \) if and only if for every \(c \in R^o \) (respectively, for a single big test element \(c \in R^o \)), the map

\[
\text{Hom}_R(R^{1/q} \otimes_R E, E) \to \text{Hom}_R(K, E)
\]

is 0 for all \(q \gg 0 \). The map is induced by composition with \(K \to R^{1/q} \otimes_R E \). By the adjointness of tensor and \(\text{Hom} \), we may identify this map with

\[
\text{Hom}_R(R^{1/q}, \text{Hom}_R(E, E)) \to \text{Hom}_R(K, E).
\]
This map sends f to the composition of $K \to R^{1/q} \otimes_R E$ with the map such that $s \otimes v \mapsto f(s)(v)$. Since $\text{Hom}_R(E, E) \cong R$ by Matlis duality and $\text{Hom}_R(K, E) \cong K$, we obtain the map

$$\text{Hom}_R(R^{1/q}, R) \to K$$

that sends f to the image of $f(c^{1/q})$ in R/m.

Thus, $u \in 0_E^*$ if and only if for every $c \in R^0$ (respectively, for a single big test element $c \in R^0$), every $f : R^{1/q} \to R$ sends $c^{1/q}$ into m for every $q \gg 0$. This is equivalent to the statement that $\theta_{q,c} : R \to R^{1/q}$ sending $1 \mapsto c^{1/q}$ does not split for every $q \gg 0$, since if $f(c^{1/q}) = a$ is a unit of R, $a^{-1}f$ is a splitting.

Note that if $R \to R^{1/q}$ sending $1 \mapsto c^{1/q}$ splits, then $R \to R^{1/q}$ splits as well: the argument in the Lecture Notes from September 21 (see pages 4 and 5) applies without any modification whatsoever. Moreover, the second Proposition on p. 5 of those notes shows that if one has the splitting for a given q, one also has it for every larger q.

We have now shown that $u \in 0_E^*$ if and only if for every $c \in R^0$ (respectively, for a single big test element $c \in R^0$), $\theta_{q,c} : R \to R^{1/q}$ sending $1 \mapsto c^{1/q}$ does not split for every q.

Hence, 0 is tightly closed in E if and only if for every $c \in R^0$ (respectively, for a single big test element $c \in R^0$) the map $\theta_{q,c}$ splits for some q.

We have now shown that conditions (1), (2), and (3) are equivalent, and that (4) is equivalent as well provided that c is a big test element.

Now suppose that we only know that c has a power that is a big test element. Then this is also true for any larger power, and so we can choose $q_1 = p^{e_1}$ such that c^{e_1} is a test element. If the equivalent conditions (1), (2), and (3) hold, then we also know that the map $R \to R^{1/q_1}$ sending $1 \mapsto (c^{q_1})^{1/q_1} = c^{1/q}$ splits for all $q \gg 0$, and we may restrict this splitting to $R^{1/q}$. Thus, (1) through (4) are equivalent.

Finally, (5) is equivalent as well, because we know that if $c \in R^0$ is such that R_c is regular, then c has a power that is a big test element. □

Remark. It is not really necessary to assume that R is reduced in the last three conditions. We can work with $R^{(c)}$ instead of $R^{1/q}$, where $R^{(c)}$ denotes R viewed as an R-algebra via the structural homomorphism F_c. We may then define $\theta_{q,c}$ to be the R-linear map $R \to R^{(c)}$ such that $1 \mapsto c$. The fact that this map is split for some some $c \in R^0$ and some q implies that R is reduced: if r is a nonzero nilpotent, we can replace it by a power which is nonzero but whose square is 0. But then the image of r is $r^q c = 0$, and the map is not even injective, a contradiction. Once we know that R is reduced, we can identify $R^{(c)}$ with $R^{1/q}$ and c is identified with $c^{1/q}$.

We want to apply the preceding Theorem to the F-finite case. We first observe:

Lemma. Let (R, m, K) be an F-finite reduce local ring. Then $\hat{R}^{1/q} \cong \hat{R}^{1/q} \cong \hat{R} \otimes_R R^{1/q}$ for all $q = p^e$.

Proof. $R^{1/q}$ is a local ring module-finite over R. Hence, the maximal ideal of R expands to an ideal primary to the maximal ideal of $R^{1/q}$, and it follows that $\widehat{R^{1/q}}$ is the $mR^{1/q}$-adic completion of $R^{1/q}$. Thus, we have an isomorphism $\alpha : R^{1/q} \cong \widehat{R} \otimes_R R^{1/q}$. Since R is reduced, so is $R^{1/q}$. Since R is F-finite, so is $R^{1/q}$, and $R^{1/q}$ is consequently excellent. Hence, the completion $\widehat{R^{1/q}}$ is reduced. If we use the identification α to write a typical element of $u \in \widehat{R^{1/q}}$ as a sum of terms of the form $s \otimes r^{1/q}$, where $s \in \widehat{R}$ and $r \in R$, we see that $u^q \in \widehat{R}$. This shows that we have $\widehat{R^{1/q}} \subseteq \widehat{R}^{1/q}$. On the other hand, if $r_0, r_1, \ldots, r_k, \ldots$ is a Cauchy sequence in R with limit s, then $r_0^{1/q}, r_1^{1/q}, \ldots, r_k^{1/q}, \ldots$ is a Cauchy sequence in $R^{1/q}$, and its limit is $s^{1/q}$. This shows that $\widehat{R^{1/q}} \subseteq \widehat{R}^{1/q}$. □

From the preceding Theorem we then have:

Corollary. If R is F-finite, then R is strongly F-regular if and only if every submodule of every module is tightly closed.

Proof. We need only show that if every submodule of every module is tightly closed, then R is strongly F-regular. We know that both conditions are local on the maximal ideals of R (cf. problem 6. of Problem Set #3). Thus, we may assume that (R, m, K) is local. We know that R has a completely stable big test element c. By part (b) of the Theorem on the first page, \widehat{R} has the property that every submodule of every module is tightly closed: in particular, 0 is tightly closed in $E = E_\mathcal{R}(K) \cong E_R(K)$. By the equivalence of (2) and (4) in the preceding Theorem, we have that the \widehat{R}-linear map $\widehat{\theta} : \widehat{R} \rightarrow \widehat{R^{1/q}}$ that sends $1 \mapsto c^{1/q}$ splits for some q. This map arises from the R-linear map $\theta : R \rightarrow R^{1/q}$ that sends $1 \mapsto c^{1/q}$ by applying $\widehat{R} \otimes_R _$. Since \widehat{R} is faithfully flat over R, the map θ is split if and only if $\widehat{\theta}$ is split, and so θ is split as well. □

Finally, we can prove the final statement in the Theorem on p. 4 of the Lecture Notes from October 22.

Corollary. If R is Gorenstein and F-finite, then R is weakly F-regular if and only if R is strongly F-regular.

Proof. The issue is local on the maximal ideals of R. We have already shown that in the local Gorenstein case, (R, m, K) is weakly F-regular if and only if 0 is tightly closed in $E_R(K)$. By the Corollary just above, this implies that R is strongly F-regular in the F-finite case. □

This justifies extending the notion of strongly F-regular ring as follows: the definition agrees with the one given earlier if the ring is F-finite.

Definition. Let R be a Noetherian ring of prime characteristic $p > 0$. We define R to be strongly F-regular if every submodule of every module (whether finitely generated or not) is tightly closed.