Discussion: local cohomology. Let \(y_1, \ldots, y_d \) be a sequence of elements of a Noetherian ring \(S \) and let \(N \) be an \(S \)-module, which need not be finitely generated. Let \(J \) be an ideal whose radical is the same as the radical of \((y_1, \ldots, y_d)S \). Then the \(d \)th local cohomology module of \(N \) with supports in \(J \), denoted \(H_d^J(N) \), may be obtained as

\[
\lim_{k \to \infty} \frac{N}{(y_1^k, \ldots, y_d^k)N}
\]

where the map from

\[
N_k = \frac{N}{(y_1^k, \ldots, y_d^k)N}
\]

to \(N_{k+h} \) is induced by multiplication by \(z^h \), where \(z = y_1 \cdots y_d \), on the numerators. If \(u \in N \), \(\langle u; y_1^k, \ldots, y_d^k \rangle \) denotes the image of the class of \(u \) in \(N_k \) in \(H_d^J(N) \). With this notation, we have that

\[
\langle u; y_1^k, \ldots, y_d^k \rangle = \langle z^h u; y_1^{k+h}, \ldots, y_d^{k+h} \rangle
\]

for every \(h \in \mathbb{N} \).

If \(y_1, \ldots, y_d \) is a regular sequence on \(N \), these maps are injective. We also know from the seminar that if \((S, \mathfrak{n}, L) \) is a Gorenstein local ring and \(y = y_1, \ldots, y_d \) is a system of parameters for \(S \), then \(H_d^J(S) = H_d^L(S) \) is an injective hull for the residue class field \(L = S/\mathfrak{n} \) of \(S \) over \(S \). In the sequel, we want to prove a relative form of this result when \(R \to S \) is a flat local homomorphism whose closed fiber is Gorenstein.

Theorem. Let \((R, m, K) \to (S, \mathfrak{n}, L) \) be a flat local homomorphism such that the closed fiber \(S/mS \) is Gorenstein. Let \(\dim(R) = n \) and let \(\dim(S/mS) = d \). Let \(y = y_1, \ldots, y_d \in \mathfrak{n} \) be elements whose images in \(S/mS \) are a system of parameters. Let \(E = E_R(K) \) be an injective hull for the residue class field \(K = R/m \) of \(R \) over \(R \). Then \(E \otimes_R H_d^J(S) \) is an injective hull for \(L = S/\mathfrak{n} \) over \(S \).

In the case where the rings are of prime characteristic \(p > 0 \),

\[
\mathcal{F}_S^R(E \otimes_R H_d^J(S)) \cong \mathcal{F}_R(E) \otimes_R H_d^J(S),
\]

and if \(u \in E \) and \(s \in S \), then

\[
(u \otimes (s; y_1^k, \ldots, y_d^k))^q = u^q \otimes (s^q; y_1^{qk}, \ldots, y_d^{qk}).
\]

Proof. We first give an argument for the case where \(R \) is approximately Gorenstein, which is somewhat simpler. We then treat the general case. Suppose that \(\{I_t\} \) is a descending
sequence of \(m\)-primary ideals of \(R\) cofinal with the powers of \(M\). We know that \(E = \lim_i R/I_i\) for any choice of injective maps \(R/I_i \to R/I_{i+1}\). Let \(\mathfrak{A}_{t,k} = I_t S + J_k\), where \(J_k = (y_1^k, \ldots, y_d^k)S\). For every \(k\) we may tensor with the faithfully flat \(R\)-algebra \(S/J_k\) to obtain an injective map \(S/\mathfrak{A}_{t,k} \to S/\mathfrak{A}_{t+1,k}\). Since \(y_1, \ldots, y_d\) is a regular sequence on \(S/I_t S\) for every \(I_t\), we also have an injective map \(S/\mathfrak{A}_{t,k} \to S/\mathfrak{A}_{t+1,k}\) induced by multiplication by \(z = y_1 \cdots y_d\) on the numerators. The ideals \(\mathfrak{A}_{t,k}\) are \(n\)-primary irreducible ideals and as \(t, k\) both become large, are contained in arbitrarily large powers of \(n\). (Once \(I_t \subseteq m^n\) and \(k \geq s\), we have that \(\mathfrak{A}_{t,k} \subseteq m^n S + n^s \subseteq n^s\).) Thus, we have

\[
E_{S}(L) \cong \lim_{\to \, t,k} \frac{S}{\mathfrak{A}_{t,k}} = \lim_{\to \, t,k} \left(\frac{R}{I_t} \otimes \frac{S}{J_k} \right) \cong \lim_k \left(\lim_{\to \, t} \left(\frac{R}{I_t} \otimes \frac{S}{J_k} \right) \right) \cong \lim_k \left(\left(\lim_{\to \, t} \frac{R}{I_t} \right) \otimes \frac{S}{J_k} \right) \cong E \otimes_R H^d(y)(S).
\]

We now give an alternative argument that works more generally. In particular, we do not assume that \(R\) is approximately Gorenstein. Let \(E_t\) denote \(\text{Ann}_{K^{m^t}}\). We first claim that that \(E_{t,k}\), which we define as \(E_t \otimes_R (S/J_k)\), is an injective hull of \(L\) over \(S_{t,k} = (R/m^{t}) \otimes_R (S/J_k)\). By part (f) of the Theorem on p. 2 of the Lecture Notes from October 29, it is Cohen-Macaulay of type 1, since that is true for \(E_t\) and for the closed fiber of \(S/J_k\), since \(S/m S\) is Gorenstein. Hence, \(E_{t,k}\) is an essential extension of \(L\), and it is killed by \(\mathfrak{A}_{t,k} = m^{t} S + J_k\). To complete the proof, it suffices to show that it has the same length as \(S_{t,k}\). Let \(M\) denote either \(R/m^t\) or \(E_t\). Note that \(M\) has a filtration with \(\ell(M)\) factors, each of which is \(\cong K = R/m\). Since \(S/J_k\) is \(R\)-flat, this gives a filtration of \(M \otimes_R S/J_k\) with \(\ell(M)\) factors each of which is isomorphic with \(K \otimes_R S/J_k = S/(m S + J_k)\). Since \(\ell(R/m^t) = \ell(E_t)\), it follows that \(S_{t,k}\) and \(E_{t,k}\) have the same length, as required.

If \(t \leq t'\) we have an inclusion \(E_t \hookrightarrow E_{t'}\), and if \(k \leq k'\), we have an injection \(S/J_k \to S/J_{k'}\) induced by multiplication by \(z^{k'-k}\) acting on the numerators. This gives injections \(E_{t} \otimes_R S_{k} \to E_{t'} \otimes_R S_{k}\) (since \(S_{k}\) is \(R\)-flat) and \(E_{t'} \otimes_R S_{k} \to E_{t'} \otimes_R S_{k}\) (since \(y_1, \ldots, y_d\) is a regular sequence on \(E_{t'} \otimes_R S\)). The composites give injections \(E_{t,k} \hookrightarrow E_{t',k}\) and the direct limit over \(t, k\) is evidently \(E \otimes K H^d(y)(S)\). The resulting module is clearly an essential extension of \(L\), since it is a directed union of essential extensions. Hence, it is contained in a maximal essential extension \(E_{S}(L)\) of \(L\) over \(S\). We claim that this inclusion is an equality. To see this, suppose that \(u \in E_{S}(L)\) is any element. Then \(u\) is killed by \(\mathfrak{A} = \mathfrak{A}_{t,k} = m^n S + J_k\) for any sufficiently large choices of \(t\) and \(k\). Hence \(u \in \text{Ann}_{E_{S}(L)}\mathfrak{A} = \mathfrak{A}\), which we know is an injective hull for \(L\) over \(S\mathfrak{A}\). But \(E_t \otimes_R S/J_k\) is a submodule of \(N\) contained in \(E \otimes_R H^d(y)(S)\), and is already an injective hull for \(L\) over \(S/\mathfrak{A}\). It follows, since they have the same length, that we must have that \(E_t \otimes_R S/J_k \subseteq N\) is all of \(N\), and so \(u \in E_t \otimes_R S/J_k \subseteq E \otimes_R H^d(y)(S)\).

To prove the final statement about the Frobenius functor, we note that by the first problem of Problem Set #4, one need only calculate \(F^d_y H^d(y)(S)\), and this calculation is the precisely the same as in third paragraph of p. 1 of the Lecture Notes from October 24. □
We are now ready to prove the analogue for strong F-regularity of the Theorem at the top of p. 5 of the Lecture Notes from October 29, which treated the weakly F-regular case.

Theorem. Let \((R, m, K) \to (S, n, L)\) be a local homomorphism of local rings of prime characteristic \(p > 0\) such that the closed fiber \(S/m\) is regular. Suppose that \(c \in R^o\) is a big test element for both \(R\) and \(S\). If \(R\) is strongly F-regular, then \(S\) is strongly F-regular.

Proof. Let \(u\) be a socle generator in \(E = E_R(K)\), and let \(y = y_1, \ldots, y_d \in n\) be elements whose images in the closed fiber \(S/mS\) form a minimal set of generators of the maximal ideal \(n/mS\). Let \(z = y_1 \cdots y_d\). Then the image of \(1\) in \(S/(mS + (y_1, \ldots, y_d)S)\) is a socle generator, and it follows that \(v = u \otimes (1; y_1, \ldots, y_d)\) generates the socle in \(E_S(L) \cong E \otimes_R H^d_{(y)}(S)\). Since \(c\) is a big test element for \(S\), it can be used to test whether \(v\) is in the tight closure of \(0\) in \(E \otimes_R H^d_{(y)}(S)\).

This occurs if and only if for all \(q \gg 0\), \(c(u \otimes (1; y_1, \ldots, y_d))^q = 0\) in \(F^c_R(E) \otimes_R H^d_{(y)}(S)\), and this means that \(cu^q \otimes (1; y_1^q, \ldots, y_d^q) = 0\) in \(F^c_R(E) \otimes_R H^d_{(y)}(S)\). By part (c) of the Theorem on p. 2 of the Lecture Notes from October 29, \(y_1, \ldots, y_d\) is a regular sequence on \(E \otimes_R S\), from which it follows that the module \(F^c_R(E) \otimes_R (S/(y_1^q, \ldots, y_d^q))\) injects into \(F^c_R(E) \otimes_R H^d_{(y)}(S)\). Since \(S = S/(y_1^q, \ldots, y_d^q)\) is faithfully flat over \(R\), the map \(F^c_R(E) \to F^c_R(E) \otimes_R S/(y_1^q, \ldots, y_d^q)\) sending \(w \mapsto w \otimes 1\) is injective. The fact that \(cu^q \otimes (1; y_1^q, \ldots, y_d^q) = 0\) implies that \(cu^q \otimes 1_S = 0\) in \(F^c_R(E) \otimes_R S\), and hence that \(cu^q = 0\) in \(R\). Since this holds for all \(q \gg 0\), we have that \(u \in 0^e_L\), a contradiction. \(\square\)

The following result will be useful in studying algebras essentially of finite type over an excellent semilocal ring that are not F-finite but are strongly F-regular: in many instances, it permits reductions to the F-finite case.

Theorem. Let \(R\) be a reduced Noetherian ring of prime characteristic \(p > 0\) that is essentially of finite type over an excellent semilocal ring \(B\).

(a) Let \(\hat{B}\) denote the completion of \(B\) with respect to its Jacobson radical. Suppose that \(R\) is strongly F-regular. Then \(\hat{B} \otimes_B R\) is essentially of finite type over \(\hat{B}\) and is strongly F-regular and faithfully flat over \(R\).

(b) Suppose that \(B = A\) is a complete local ring with coefficient field \(K\). Fix a \(p\)-base \(\Lambda\) for \(K\). For all \(\Gamma \ll \Lambda\), let \(R^\Gamma = A^\Gamma \otimes_A R\). We may identify \(\text{Spec}(R^\Gamma)\) with \(X = \text{Spec}(R)\) as topological spaces, and we let \(Z^\Gamma\) denote the closed set in \(\text{Spec}(R)\) of points corresponding to primes \(P\) such that \(R^\Gamma_P\) is not strongly F-regular. Then \(Z^\Gamma\) is the same for all sufficiently small \(\Gamma \ll \Lambda\), and this closed set is the locus in \(X\) consisting of primes \(P\) such that \(R_P^\Gamma\) is not strongly F-regular.

In particular, if \(R\) is strongly F-regular, then for all \(\Gamma \ll \Lambda\), \(R^\Gamma\) is strongly F-regular.

Proof. (a) Since \(B \to \hat{B}\) is faithfully flat with geometrically regular fibers, the same is true for \(R \to \hat{B} \otimes_B R\). Choose \(c \in R^o\) such that \(R_c\) is regular. Then we also have that
(\hat{B} \otimes_B R)_c$ is regular. Hence, c has a power that is a completely stable big test element in both rings. Let Q be any prime ideal of $S = \hat{B} \otimes_B R$ and let P be its contraction to R. We may apply the preceding Theorem to the map $R_P \to S_Q$, and so S_Q is strongly F-regular for all Q. It follows that S is strongly F-regular.

(b) For all choices of $\Gamma' \subseteq \Gamma$ cofinite in Λ, we have that $R \subseteq R^{\Gamma'} \subseteq R^\Gamma$, and that the maps are faithfully flat and purely inseparable. Since every R^Γ is F-finite, we know that every Z_Γ is closed. Since the map $R^{\Gamma'} \subseteq R^\Gamma$ is faithfully flat, Z_Γ decreases as Γ decreases. We may choose Γ so that $Z = Z_\Gamma$ is minimal, and, hence, minimum, since a finite intersection of cofinite subsets of Λ is cofinite.

We shall show that Z must be the set of primes P in Spec (R) such that R_P is strongly F-regular. If Q is a prime of R^Γ not in Z_Γ lying over P in R, the fact that $R_P \to R^\Gamma_Q$ is faithfully flat implies that P is not in Z. Thus, $Z \subseteq Z_\Gamma$. If they are not equal, then there is a prime P of R such that R_P is strongly F-regular but R^Γ_Q is not strongly F-regular, where Q is the prime of R^Γ corresponding to P. Choose $\Gamma' \subseteq \Gamma$ such that $Q' = PR^{\Gamma'}$ is prime. It will suffice to prove that $S = R^\Gamma_Q$ is strongly F-regular, for this shows that $Z_\Gamma \subseteq Z_\Gamma - \{P\}$ is strictly smaller than Z_Γ. Since S is F-finite, we may choose a big test element c_1 for S. Then c_1 has a q_1th power c in R_P for some q_1, and c is still a big test element for S. The closed fiber of $R_P \to S$ is $S/PS = S/Q'$, a field. Hence, by the preceding Theorem, S is strongly F-regular. □

Using this result, we can now prove:

Theorem. Let R be reduced and essentially of finite type over an excellent semilocal ring B. Then the strongly F-regular locus in R is Zariski open.

Proof. We first consider the case where $B = A$ is a complete local ring. Choose a coefficient field K for A and a p-base Λ for it. Then the result is immediate from part (b) of the preceding Theorem by comparison with R^Γ for any $\Gamma \ll \Lambda$.

In the general case, let $S = \hat{B} \otimes_B R$. Since \hat{B} is a finite product of complete local rings, S is a finite product of algebras essentially of finite type over a complete local ring, and so the non-strongly F-regular locus is closed. Let J denote an ideal of S that defines this locus.

Now consider any prime ideal P of R such that R_P is strongly F-regular. Let $W = R - P$. Then we may apply part (a) of the preceding Theorem to $R_P \to \hat{B} \otimes_B R_P$ to conclude that $\hat{B} \otimes_B R_P = W^{-1}S$ is strongly F-regular. It follows that W must meet J; otherwise, we can choose a prime Q of S containing J but disjoint from W, and it would follow that S_Q is strongly F-regular even though $J \subseteq Q$, a contradiction. Choose $c \in W \cap J$. Then S_c is strongly F-regular, and since $R_c \to S_c$ is faithfully flat, so is R_c. Thus, the set of primes of R not containing c is a Zariski open neighborhood of P that is contained in the strongly F-regular locus. □