Summary of Local Cohomology Theory

The following material and more was discussed in seminar but not in class. We give a summary here.

Let I be an ideal of a Noetherian ring R and let M be any R-module, not necessarily finitely generated. We define

$$H^i_I(M) = \lim_{\rightarrow} \text{Ext}^i_R(R/I^t, M).$$

This is called the ith local cohomology module of M with support in I.

$$H^0_I(M) = \lim_{\rightarrow} \text{Hom}_R(R/I^t, M)$$

which may be identified with $\bigcup_t \text{Ann}_R M/I^t \subseteq M$. Every element of $H^j_I(M)$ is killed by a power of I. Evidently, if M is injective then $H^j_I(M) = 0$ for $j \geq 1$. By a taking a direct limit over t of long exact sequences for Ext, we see that if

$$0 \to M' \to M \to M'' \to 0$$

is exact there is a functorial long exact sequence for local cohomology:

$$0 \to H^0_I(M') \to H^0_I(M) \to H^0_I(M'') \to \cdots \to H^j_I(M') \to H^j_I(M) \to H^j_I(M'') \to \cdots.$$

It follows that $H^j_I(M)$ is the jth right derived functor of $H^0_I(M)$. In the definition we may use instead of the ideals I^t any decreasing sequence of ideals cofinal with the powers of I. It follows that if I and J have the same radical, then $H^i_I(M) \cong H^i_J(M)$ for all i.

Theorem. Let M be a finitely generated module over the Noetherian ring R, and I and ideal of R. Then $H^i_I(M) \neq 0$ for some i if and only if $IM \neq M$, in which case the least integer i such that $H^i_I(M) \neq 0$ is depth_IM.

Proof. $IM = M$ iff $I + \text{Ann}_R M = R$, and every element of every $H^j_I(M)$ is killed by some power I^N of I and by $\text{Ann}_R M$: their sum must be the unit ideal, and so all the local cohomology vanishes in this case.
Now suppose that $IM \neq M$, so that the depth d is a well-defined integer in \mathbb{N}. We use induction on d. If $d = 0$, some nonzero element of M is killed by I, and so $H^0_I(M) \neq 0$. If $d > 0$ choose an element $x \in I$ that is not a zerodivisor on M, and consider the long exact sequence for local cohomology arising from the short exact sequence

$$0 \to M \overset{x}{\to} M \to M/\langle x \rangle M \to 0.$$

From the induction hypothesis, $H^j_M(M/\langle x \rangle M) = 0$ for $j < d - 1$ and $H^{d-1}_{M}(M/\langle x \rangle M) \neq 0$. The long exact sequence therefore yields the injectivity of the map

$$H^{j+1}_I(M) \xrightarrow{x} H^{j+1}_I(M)$$

for $j < d - 1$. But every element of $H^{j+1}_I(M)$ is killed by a power of I and, in particular, by a power of x. This implies that $H^{j+1}_I(M) = 0$ for $j < d - 1$. Since $0 = H^{d-1}_I(M) \to H^{d-1}_I(M/\langle x \rangle M) \to H^d_I(M)$ is exact, $H^{d-1}_I(M/\langle x \rangle M)$, which we know from the induction hypothesis is not 0, injects into $H^d_I(M)$. □

If A^\bullet and B^\bullet are two right complexes of R-modules with differentials d and d', the total tensor product is the right complex whose nth term is

$$\bigoplus_{i+j=n} A^i \otimes_R B^j$$

and whose differential d'' is such that $d''(a_i \otimes b_j) = d(a_i) \otimes b_j + (-1)^ia_i \otimes d'(b_j)$.

Now let $f = f_1, \ldots, f_n$ generate an ideal with the same radical as I. Let $C^\bullet(f^\infty; R)$ denote the total tensor product of the complexes $0 \to R \to R_{f_j} \to 0$, which gives a complex of flat R-modules:

$$0 \to R \to \bigoplus_j R_{f_j} \to \bigoplus_{j_1 < j_2} R_{f_{j_1},f_{j_2}} \to \cdots \to \bigoplus_{j_1 < \cdots < j_t} R_{f_{j_1},\ldots,f_{j_t}} \to \cdots \to R_{f_1,\ldots,f_n} \to 0.$$

The differential restricted to R_g, where $g = f_{j_1} \cdots f_{j_t}$, takes u to the direct sum of its images, each with a certain sign, in the rings $R_{f_{j_{t+1}}}$, where j_{t+1} is distinct from j_1, \ldots, j_t.

Let

$$C^\bullet(f^\infty; M) = C^\bullet(f^\infty; R) \otimes_R M,$$

which looks like this:

$$0 \to M \to \bigoplus_j M_{f_j} \to \bigoplus_{j_1 < j_2} M_{f_{j_1},f_{j_2}} \to \cdots \to \bigoplus_{j_1 < \cdots < j_t} M_{f_{j_1},\ldots,f_{j_t}} \to \cdots \to M_{f_1,\ldots,f_n} \to 0.$$
We temporarily denote the cohomology of this complex as \(\mathcal{H}^\bullet_2(M) \). It turns out to be the same, functorially, as \(H^\bullet_1(M) \). We shall not give a complete argument here but we note several key points. First,

\[
\mathcal{H}^0_2(M) = \text{Ker} (M \to \bigoplus_j M_{f_j})
\]

is the same as the submodule of \(M \) consisting of all elements killed by a power of \(f_j \) for every \(j \), and this is easily seen to be the same as \(H^0_0(M) \). Second, by tensoring a short exact sequence of modules

\[
0 \to M' \to M \to M'' \to 0
\]

with the complex \(C^\bullet(f^\infty; R) \) we get a short exact sequence of complexes. This leads to a functorial long exact sequence for \(H^\bullet_1(M) \). These two facts imply an isomorphism of the functors \(H^\bullet_1(M) \) and \(H^\bullet_2(M) \) provided that we can show that \(H^j_1(M) = 0 \) for \(j \geq 1 \) when \(M \) is injective. We indicate how the argument goes, but we shall assume some basic facts about the structure of injective modules over Noetherian rings.

First note that if one has a map \(R \to S \) and an \(S \)-module \(M \), then if \(g \) is the image of \(f \) in \(S \), we have \(H^\bullet_1(M) = H^\bullet_2(M) \). This has an important consequence for local cohomology once we establish that the two theories are the same: see the Corollary below.

Every injective module over a Noetherian ring \(R \) is a direct sum of injective hulls \(E(R/P) \) for various primes \(P \). \(E(R/P) \) is the same as the injective hull of the residue class field of the local ring \(R_P \). This, we may assume without loss of generality that \((R, m, K) \) is local and that \(M \) is the injective hull of \(K \). This enables to reduce to the case where \(M \) has finite length over \(R \), and then, using the long exact sequence, to the case where \(M = K \), since \(M \) has a finite filtration such that all the factors are \(K \). Thus, we may assume that \(M = K \). The complex \(C^\bullet(f^\infty; R) \) is then a tensor product of complexes of the form

\[
0 \to R \to R \to 0
\]

and

\[
0 \to R \to 0
\]

with the complex \(C^\bullet(f^\infty; R) \) we get a short exact sequence of complexes. This leads to a functorial long exact sequence for \(H^\bullet_1(M) \). These two facts imply an isomorphism of the functors \(H^\bullet_1(M) \) and \(H^\bullet_2(M) \) provided that we can show that \(H^j_1(M) = 0 \) for \(j \geq 1 \) when \(M \) is injective. We indicate how the argument goes, but we shall assume some basic facts about the structure of injective modules over Noetherian rings.

First note that if one has a map \(R \to S \) and an \(S \)-module \(M \), then if \(g \) is the image of \(f \) in \(S \), we have \(H^\bullet_1(M) = H^\bullet_2(M) \). This has an important consequence for local cohomology once we establish that the two theories are the same: see the Corollary below.

Corollary. If \(R \to S \) is a homomorphism of Noetherian rings, \(M \) is an \(S \)-module, and \(rM \) denotes \(M \) viewed as an \(R \)-module via restriction of scalars, then for every ideal \(I \) of \(R \), \(H^\bullet_I(rM) \cong H^\bullet_I(S)(M) \).

Proof. Let \(f_1, \ldots, f_n \) generate \(I \), and let \(g_1, \ldots, g_n \) be the images of these elements in \(S \): they generate \(IS \). Then we have

\[
H^\bullet_I(rM) \cong \mathcal{H}^\bullet_2(rM) \cong \mathcal{H}^\bullet_2(S)(M) \cong H^\bullet_I(S)(M).
\]

\[\square \]
We note that the complex $0 \to R \to R_f \to 0$ is isomorphic to the direct limit of the cohomological Koszul complexes $K^•(f^t; R)$, where the maps between consecutive complexes are given by the identity on the degree 0 copy of R and by multiplication by f on the degree 1 copy of R — note the commutativity of the diagram:

\[
\begin{array}{ccc}
0 & \longrightarrow & R \\
 \uparrow \text{id} & & \uparrow f \\
0 & \longrightarrow & R \\
\end{array}
\]

Tensoring these Koszul complexes together as f runs through f_1, \ldots, f_n, we see that

\[
C^•(f^\infty; M) = \lim_{\to} K^•(f_1^t, \ldots, f_n^t; M).
\]

Hence, whenever f_1, \ldots, f_n generate I up to radicals, taking cohomology yields

\[
H_t^i(M) \cong \lim_{\to} H^•(f_1^t, \ldots, f_n^t; M).
\]

When R is a local ring of Krull dimension d and x_1, \ldots, x_d is a system of parameters, this yields

\[
H^d_m(R) = \lim_{\to} R/(x_1^t, \ldots, x_d^t)R.
\]

Likewise, for every R-module M,

\[
H^d_m(M) = \lim_{\to} M/(x_1^t, \ldots, x_d^t)M \cong H^d_m(R) \otimes_R M.
\]

We next recall that when (R, m, K) is a complete local ring and $E = E_R(K)$ is an injective hull of the residue class field (this means that $K \subseteq E$, where E is injective, and every nonzero submodule of E meets K), there is duality between modules with ACC over R and modules with DCC: if M satisfies one of the chain conditions then $M^\vee = \text{Hom}_R(M, E)$ satisfies the other, and the canonical map $M \to M^{\vee\vee}$ is an isomorphism in either case. In particular, when R is complete local, the obvious map $R \to \text{Hom}_R(E, E)$ is an isomorphism. An Artin local ring R with a one-dimensional socle is injective as a module over itself, and, in this case, $E_R(K) = R$. If R is Gorenstein and x_1, \ldots, x_d is a system of parameters, one has that each $R_t = R/(x_1^t, \ldots, x_d^t)R$ is Artin with a one-dimensional socle, and one can show that in this case $E_R(K) \cong H^d_M(R)$. When R is local but not complete, if M has ACC then M^\vee has DCC, and $M^{\vee\vee}$ is canonically isomorphic with \hat{M}. If M has DCC, M^\vee is a module with ACC over \hat{R}, and $M^{\vee\vee}$ is canonically isomorphic with M.

We can make use of this duality theory to gain a deeper understanding of the behavior of local cohomology over a Gorenstein local ring.
Theorem (local duality over Gorenstein rings). Let \((R, m, K)\) be a Gorenstein local ring of Krull dimension \(d\), and let \(E = H^d_m(R)\), which is also an injective hull for \(K\). Let \(M\) be a finitely generated \(R\)-module. Then for every integer \(j\), \(H^j_m(M) = \text{Ext}^{d-j}_R(M, R)^\vee\).

Proof. Let \(x_1, \ldots, x_d\) be a system of parameters for \(R\). In the Cohen-Macaulay case, the local cohomology of \(R\) vanishes for \(i < d\), and so \(C^\bullet(x^\infty; R)\), numbered backwards, is a flat resolution of \(E\). Thus,

\[H^j_m(M) \cong \text{Tor}^{R}_{d-j}(M, E). \]

Let \(G\) be a projective resoloution of \(M\) by finitely generated projective \(R\)-modules. Then

\[\text{Ext}^{d-j}_R(M, R)^\vee \cong H^{d-j}(\text{Hom}_R(G, R), E) \]

(since \(E\) is injective, \(\text{Hom}_R(_, E)\) commutes with the calculation of cohomology). The functor \(\text{Hom}_R(\text{Hom}_R(_, R), E)\) is isomorphic with the functor \(_ \otimes E\) when restricted to finitely generated projective modules \(G\). To see this, observe that for every \(G\) there is an \(R\)-bilinear map \(G \times E \to \text{Hom}_R(\text{Hom}_R(G, R), E)\) that sends \((g, u)\) (where \(g \in G\) and \(u \in E\)) to the map whose value on \(f : G \to R\) is \(f(g)u\). This map is an isomorphism when \(G = R\), and commutes with direct sum, so that it is also an isomorphism when \(G\) is finitely generated and free, and, likewise, when \(G\) is a direct summand of a finitely generated free module. But then

\[\text{Ext}^{d-j}_R(M, R)^\vee \cong H^{d-j}(G, \otimes E) \cong \text{Tor}^{R}_{d-j}(M, E), \]

which is \(\cong H^j_m(M)\), as already observed. \(\square\)

Corollary. Let \(M\) be a finitely generated module over a local ring \((R, m, K)\). Then the modules \(H^i_m(M)\) have DCC.

Proof. The issues are unchanged if we complete \(R\) and \(M\). Then \(R\) is a homomorphic image of a complete regular local ring, which is Gorenstein. The problem therefore reduces to the case where the ring is Gorenstein. By local duality, \(H^i_m(M)\) is the dual of the Noetherian module \(\text{Ext}^{n-i}_R(M, R)\), where \(n = \text{dim}(R)\). \(\square\)

The action of the Frobenius endomorphism on local cohomolgy

Let \(R\) be a ring of prime characteristic \(p > 0\), and let \(I = (f_1, \ldots, f_n)R\). Consider the complex \(C^\bullet = C^\bullet(f^\infty; R)\), which is

\[0 \to R \to \bigoplus_j R_{f_j} \to \bigoplus_{j_1 < j_2} R_{f_{j_1}f_{j_2}} \to \cdots \to \bigoplus_{j_1 < \cdots < j_t} R_{f_{j_1} \cdots f_{j_t}} \to \cdots \to R_{f_1 \cdots f_n} \to 0. \]
This complex is a direct sum of rings of the form \(R_g \) each of which has a Frobenius endomorphism \(F_{R_g} : R_g \to R_g \). Given any homomorphism \(h : S \to T \) of rings of prime characteristic \(p > 0 \), there is a commutative diagram:

\[
\begin{array}{ccc}
S & \xrightarrow{h} & T \\
F_g & \uparrow & \uparrow F_T \\
S & \xrightarrow{h} & T
\end{array}
\]

The commutativity of the diagram follows simply because \(h(s)^p = h(s^p) \) for all \(s \in S \).

Since every \(C^i \) is a direct sum of \(R \)-algebras, each of which has a Frobenius endomorphism, collectively these endomorphisms yield an endomorphism of \(C^i \) that stabilizes every summand and is, at least, \(\mathbb{Z} \)-linear. This gives an endomorphism of \(C^* \) that commutes with differentials \(\delta^i : C^i \to C^{i+1} \) in the complex. The point is that the restriction of the differential to a term \(R_g \) may be viewed as a map to a product of rings of the form \(R_{gf} \).

Each component map is either \(h \) or \(-h \), where \(h : R_g \to R_{gf} \) is the natural localization map, and is a ring homomorphism. The homomorphism \(h \) commutes with the actions of the Frobenius endomorphisms, and it follows that \(-h \) does as well.

This yields an action of \(F \) on the complex and, consequently, on its cohomology, i.e., an action of \(F \) on the local cohomology modules \(H_j^i(R) \). It is not difficult to verify that this action is independent of the choice of generators for \(I \). This action of \(F \) is more than \(\mathbb{Z} \)-linear. It is easy to check that for all \(r \in R \), \(F(ru) = r^p F(u) \). This is, in fact, true for the action on \(C^* \) as well as for the action on \(H_j^i(R) \).

If \(R \to S \) is any ring homomorphism, there is an induced map of complexes

\[
C^*(f^\infty; R) \to C^*(f^\infty; S).
\]

It is immediate that the actions of \(F \) are compatible with the induced maps of local cohomology, i.e., that the diagrams

\[
\begin{array}{ccc}
H_j^i(R) & \xrightarrow{F} & H_j^i(S) \\
\uparrow F & & \uparrow F \\
H_j^i(R) & \to & H_j^i(S)
\end{array}
\]

commute.

We now want to use our understanding of local cohomology to prove the Theorem of Huneke and Lyubeznik.

Discussion. We are primarily interested in studying \(R^+ \) when \((R, m, K) \) is a local domain that is a homomorphic image of a Gorenstein ring \(A \). If \(M \) is the inverse image of \(m \) in \(A \), we may replace \(A \) by \(A_M \) and so assume that \(A \) is local.
Note, however, that when we take a module-finite extension domain of R, the ring that we obtain is no longer local; it is only semilocal. Therefore, we shall frequently have the hypothesis that R is a semilocal domain that is a module-finite extension of a homomorphic image of a Gorenstein local ring.

Let (A, m, K) denote a Gorenstein local ring, p a prime ideal of this ring, and R a local domain that is a module-finite extension of $B = A/p$. R is semilocal in this situation. The maximal ideals of R are the same as the prime ideals m that lie over m/p, since R/m is a module finite extension of $B/(m \cap B)$, and so R/m has dimension 0 if and only if $B/(m \cap B)$ has dimension 0, which occurs only when $m \cap B$ is the maximal ideal m/p of B. Note that since A is Gorenstein, it is Cohen-Macaulay, and therefore universally catenary. Hence, so is R. The Jacobson radical \mathfrak{A} of R will be the same as the radical of mR.

By the dimension formula, which is stated on p. 3 of the Lecture Notes from September 18 for Math 711, Fall 2006, and proved in the Lecture Notes from September 20 from the same course on pp. 3–5, we have that $\text{height}(m) = \text{height}(m/p)$ for every maximal ideal m of R: thus, the height of every maximal ideal is the same as $\dim(R) = \dim(A/p)$.

We next observe the following fact:

Proposition. Let R be a domain and let W be a multiplicative system of R that does not contain 0.

(a) If T is an extension domain of $W^{-1}R$ and $u \in T$ is integral over $W^{-1}R$, then there exists $w \in W$ such that wu is integral over R.

(b) If T is module-finite (respectively, integral) extension domain of R then there exists a module-finite (respectively, integral) extension domain S of R within T such that $T = W^{-1}S$.

(c) If $W^{-1}(R^+/\mathfrak{A})$ is an absolute integral closure for $W^{-1}R$, i.e., we may write $W^{-1}(R^+/\mathfrak{A}) \cong (W^{-1}R)^+$. That is, plus closure commutes with localization.

Proof. (a) Consider an equation of integral dependence for u on T. We may multiply by a common denominator $w \in W$ for the coefficients that occur to obtain an equation

$$wu^k + r_1u^{k-1} + \cdots + r_iu^{k-i} + \cdots + r_{k-1}u + r_k = 0,$$

where the $r_i \in R$. Multiply by w^{k-1}. The resulting equation can be rewritten as

$$(wu)^k + r_1(wu)^{k-1} + \cdots + w^{i-1}r_i(wu)^{k-i} + \cdots + w^{k-2}r_{k-1}(wu) + w^{k-1}r_k = 0,$$

which shows that wu is integral over R, as required.

(b) If T is module-finite over R, choose a finite set of generators for T over R. In the case where T is integral, choose an arbitrary set of generators for T over R. For each
generator \(t_i \), choose \(w_i \in W \) such that \(w_it_i \) is integral over \(R \). Let \(S \) be the extension of \(R \) generated by all the \(w_it_i \).

(c) We have that \(W^{-1}R^+ \) is integral over \(W^{-1}R \) and so can be enlarged to a plus closure \(T \). But each element \(u \in T \) is integral over \(W^{-1}R \), and so there exists \(w \in W \) such that \(wu \) is integral over \(R \), which means that \(wu \in R^+ \). But then \(u = w^{-1}(wu) \in W^{-1}R^+ \), and it follows that \(T = W^{-1}R^+ \).

(d) Note that \(\supseteq \) is obvious. Now suppose that \(u \in I(W^{-1}R)^+ = IW^{-1}(R^+) \) by part (c). Then we can choose \(w \in W \) such that \(wu \) is integral over \(R \), which means that \(wu \in R^+ \). But then \(u = w^{-1}(wu) \in W^{-1}R^+ \), and it follows that \(T = W^{-1}R^+ \).

Remark. Part (d) may be paraphrased as asserting that plus closure for ideals commutes with arbitrary localization. I.e., \((IW^{-1}R)^+ = IW^{-1}(R^+) \). Here, whenever \(J \) is an ideal of a domain \(S \), \(J^+ = (JS^+) \cap S \).

Remark: plus closure for modules. If \(R \) is a domain we can define the plus closure of \(N \subseteq M \) as the set of elements of \(M \) that are in \(\langle R^+ \otimes R N \rangle \) in \(R^+ \otimes R M \). It is easy to check that the analogue of (d) holds for modules as well.

We are now ready to begin the proof of the following result.

Theorem (Huneke-Lyubeznik). Let \(R \) be a semilocal domain of prime characteristic \(p > 0 \) that is a module-finite extension of a homomorphic image of a Gorenstein local ring \((A, m, K)\). Let \(\mathfrak{A} \) denote the Jacobson radical in \(R \), which is the same as the radical of \(mR \). Let \(d \) be the Krull dimension of \(R \). Then there is a module-finite extension domain \(S \) of \(R \) such that for all \(i < d \), the map \(H^i_m(R) \to H^i_m(S) \) is 0. If \(\mathfrak{B} \) denotes the Jacobson radical of \(S \), we may rephrase this by saying that \(H^i_A(R) \to H^i_B(S) \) is 0 for all \(i < d \).

Proof. Let \(n \) denote the Krull dimension of the local Gorenstein ring \((A, m, K)\). Since \(R \) is a module-finite extension of \(A/p \), we have that the height of \(p \) is \(n - d \).

Recall from the discussion above that \(\mathfrak{A} \) (respectively, \(\mathfrak{B} \)) is the radical of \(mR \) (respectively, \(mS \)). This justifies the rephrasing. We may think of the local cohomology modules as \(H^i_m(R) \) and \(H^i_m(S) \).

It suffices to solve the problem for one value of \(i \). The new ring \(S \) satisfies the same hypotheses as \(R \). We may therefore repeat the process \(d \) times, if needed, to obtain a module-finite extension such that all local cohomology maps to 0: once it maps to 0 for a given \(S \), it also maps to 0 for any further module-finite extension. In the remainder of the proof, \(i \) is fixed.

It follows from local duality over \(A \) that is suffices to choose a module-finite extension \(S \) of \(R \) such that the map

\[
\text{Ext}^{n-i}_A(S, A) \to \text{Ext}^{n-i}_A(R, A)
\]

is 0, since the map of local cohomology is the dual of this map. Note that both of the modules in \((\ast) \) are finitely generated as \(A \)-modules. We shall use induction on \(\dim(R) \) to
reduce to the case where the image of the map has finite length over \(A \): we then prove a theorem to handle that case. Let \(V_S \) denote the image of the map.

Let \(P_1, \ldots, P_h \) denote the associated primes over \(A \) of the image of this map that are not the maximal ideal of \(A \). Note that as \(S \) is taken successively larger, the image \(V_S \) cannot increase. Also note that since \(V_S \) is a submodule of \(N = \text{Ext}_A^{n-i}(R, A) \), any associated prime of \(V_S \) is an associated prime of \(N \). We show that for each \(P_i \), we can choose a module-finite extension \(S_i \) of \(R \) such that \(P \) is not an associated prime of \(V_{S_i} \). This will remain true when we enlarge \(S_i \) further. By taking \(S \) so large that it contains all the \(S_i \), we obtain \(V_S \) which, if it is not 0, can only have the associated prime \(m \). This implies that \(V_S \) has finite length over \(A \), as required.

We write \(P \) for \(P_i \). Let \(W = A - P \). Then \(W^{-1}R = R_P \) is module-finite over the Gorenstein local ring \(A_P \). Let \(P \) have height \(s \) in \(A \), where \(s < n \). By local duality over \(A_P \), we have that the dual of \(\text{Ext}_A^{n-i}(M_P, A_P) \) is, functorially, \(H_{P \cdot A_P}^{s-(n-i)}(M_P) \) for every finitely generated \(A \)-module \(M \). Since \(i < d \),

\[
s - (n - i) < s - (n - d) = s - \text{height}(\mathfrak{p}) = s - \text{height}(\mathfrak{p} A_P) = \dim(A_P/\mathfrak{p} A_P).
\]

By the induction hypothesis we can choose a module-finite extension \(T \) of \(R_P \) such that

\[
H_{P \cdot A_P}^{s-(n-i)}(T) \to H_{P \cdot A_P}^{s-(n-i)}(R_P)
\]

is 0. By part (b) of the Proposition on p. 7, we can choose a module-finite extension \(S \) of \(R \) such that \(T = S_P \). Then we have the dual statement that

\[
\text{Ext}_{A_P}^{n-i}(S_P, A_P) \to N_P
\]

is 0, which shows that \((V_S)_P = 0 \). But then \(P \) is not an associated prime of \(V_S \), as required.

Thus, we can choose a module-finite extension \(S \) of \(R \) such that \(V_S \) has finite length as an \(A \)-module. Taking duals, we find that the image of \(H_m^n(R) \to H_m^n(S) \) has finite length as an \(A \)-module. Since Frobenius acts on both of these local cohomology modules so that the action is compatible with this map, it follows that the image \(W \) of the map is stable under the action of Frobenius. Moreover, \(W \) is a finitely generated \(A \)-module, and, consequently, a finitely generated \(S \)-module. It suffices to show that we can take a further module-finite extension \(T \) of \(S \) so as to kill the image of \(W \) in \(H_m^n(T) \). This follows from the Theorem below. \(\square \)

Theorem. Let \(I \subseteq S \) be an ideal of a Noetherian domain \(S \) of prime characteristic \(p > 0 \), and let \(W \) be a finitely generated submodule of \(H_I^1(S) \) that is stable under the action of the Frobenius endomorphism \(F \). Then there is a module-finite extension \(T \) of \(S \) such that the image of \(W \) in \(H_I^1(T) \) is 0.

Notice that there is no restriction on \(i \) in this Theorem. We shall, in fact, prove a somewhat stronger fact of this type.