1. Let $\theta(1) = c \neq 0$. If $r \in IS \cap R$, we have $r = f_1s_1 + \cdots + f_ns_n$ with $r \in R$, the $f_i \in I$, and $s_1, \ldots, s_n \in S$. Then for all q, $r^q = f_1^q s_1^q + \cdots + f_n^q s_n^q$, and applying the R-linear map θ yields $cr^q = r\theta(1) = f_1^q\theta(s_1^q) + \cdots + f_n^q\theta(s_n^q) \in I[a]$. Hence, $r \in I^s$.

2. Since S is weakly F-regular, it is normal, and, hence, a finite product of weakly F-regular domains. It follows that R is reduced. We use induction first on the number of factors of R, if R is a product, and second on the number of factors of S. If R is not a domain, we can partition the minimal primes into two nonempty sets M_1 and M_2. We can construct a in all of the primes that are in M_1 and not in any of the primes that are in M_2, and b in all of the primes in M_2 and in none of the primes in M_1. Then $ab = 0$ and $a + b$ is not a zerodivisor in R. If we kill any minimal prime of S, either a or b becomes 0, and, in either case, a is in the ideal $(a + b)S$. Hence, a is in its tight closure and therefore in the ideal in S. Then $a \in (a + b)S \cap R = (a + b)R$, and so we can find $e \in R$ such that $a = e(a + b)$. Modulo every prime in M_1, we must have $e \equiv 0$, and modulo every prime in M_2 we must have $e \equiv 1$. It follows that $e \equiv e^2$ mod every minimal prime, and, hence, that e is a nontrivial idempotent in R. It is immediate that R is a product $Re \times Rf$ with $f = 1 - e$, and $Re \twoheadrightarrow Se$ and $Rf \twoheadrightarrow SF$ inherit the hypothesis. Hence, by induction on the number of factors of R, both Re and Rf are weakly F-regular: consequently, so is R. Thus, we may reduce to the case where R is a domain. If R^s maps into S^s, which is automatic if S is a domain, then whenever $cr^q \in I[a]$ for all $q \gg 0$ in R, we have that $cr^q \in I[a]S = (IS)^[a]$ for all $q \gg 0$ in S, and then $r \in (IS)^s$ in S, i.e., $r \in IS$, since S is weakly F-regular. But then $r \in IS \cap R = I$, and so every ideal I of R is tightly closed. Now suppose that $S = S_1 \times \cdots \times S_n$ where $n \geq 2$. We proceed by induction on n. Every S_i is an R-algebra. If $R \to S_i$ is injective for every i, then R^s maps into $S^s = S_1^s \times \cdots \times S_n^s$. If not, we may assume by renumbering that $R \to S_n$ has a nonzero kernel P. Let $T = S_1 \times \cdots \times S_{n-1}$. We shall show that $R \to T$ still has the property that $IT \cap R = I$ for all $I \subset R$, and then the result follows by induction on n. Suppose not, and choose $I \subset R$ and $u \in R - I$ such that $u \in IT \cap R$. Let a be a nonzero element of P. Then $au \in aIT \cap R$, but $au \notin aI$ in R. Since au maps to 0 in S_n and $aIS = (0)$ in S_n, we have that $au \in aIT \times S_n = aIS$ as well, and so $au \in aIS \cap R - aI$, a contradiction.

3. If $P \in \text{Ass}(M)$ then $R/P \twoheadrightarrow M$. Applying F^c, which is faithfully flat, we have $R/P[a] \twoheadrightarrow F^c(M)$. Since $\text{Rad}(P[a]) = P$, P is a minimal prime of $P[a]$, and so $R/P \twoheadrightarrow R/P[a] \twoheadrightarrow F^c(M)$. Hence, $P \in \text{Ass}(F^c(M))$. Now suppose that $P \notin \text{Ass}(M)$. Whether $P \in \text{Ass}(M)$ or $P \in \text{Ass}(F^c(M))$ is unaffected by localization at P. (Note that if $T = R_P$, $F^c_T(M_P) \cong F^c(R)(M_P)$.) Therefore, we may assume that (R, P, K) is local, and that $P \notin \text{Ass}(M)$. Then there exists $x \in P$ that is not a zerodivisor on M. It follows that x^q is a nonzerodivisor on $F^c(M)$, and so $P \notin \text{Ass}(F^c(M))$, as required.

4. For every generator u_i of J we can choose $c_i \in R^s$ such that $cu_i^q \in I[a]$ for all $q \gg 0$. Let $c \in R^s$ be the product of the c_i. Then $c \in R^s$ is such that $cJ[a] \subseteq I[a]$ for all $q \gg 0$. Now $0 \leq \ell(R/I[a]) - \ell(R/J[a])$ (since $I[a] \subseteq J[a]$), and this is the same as $\ell(J[a]/I[a])$. Since J has k generators, $J[a]$ has at most k generators, and the same holds for $N_q = J[a]/I[a]$.

Math 711, Fall 2007

Problem Set #1 Solutions
Since c and $I^{[q]}$ both kill N_q, we can map $R/(I^{[q]} + cR)^{\oplus k}$ onto N_q, which bounds its length by $k\ell(R/(I^{[q]} + cR)) = k\ell(\overline{R}/\mathfrak{A}^{[q]}) \leq k\ell(\overline{R}/\mathfrak{A}^{[q]})$. Since \overline{R} has dimension $d - 1$ and \mathfrak{A} is primary to its maximal ideal, this length is bounded by $C_1(qh)^{d-1}$, using the ordinary Hilbert function. This yields the upper bound $kC_1h^{d-1}q^{d-1}$, so that we may take $C = kC_1h^{d-1}$. □

5. Let p_1, \ldots, p_n be the minimal primes of R, and let $c_i \in R - p_i$ represent a test element in R/p_i. We may choose d_i not in p_i but in all other minimal primes of R. Let $c = c_1d_1 + \cdots + c_nd_n$. Then $c \in R^{\circ}$, and if $u \in N^{\star}_M$, this is true modulo every p_i, and so $c_iu \in N + p_iM$ for all i. Then $c_i d_i u \in N$, since d_i kills p_i, and adding shows that $cu \in N$, as required. (The argument is valid both for test elements and for big test elements.) □

6. This result is proved in the Lecture Notes of October 8.