1. \(\subseteq \) is clear. To prove \(\supseteq \), if \(c \) is a test element and \(u \in \bigcap_n (I + m^n)^* \) then for all \(q \) and \(n \), \(cu^q \in (I + m^n)[q] = I[q] + (m^n)[q] \in I^q + m^n \). Fix \(q \). Then \(cu^q \in \bigcap_n (I[q] + m^n) = I^q \). Hence, \(u \in I^* \). \(\square \)

2. \(u \in I^* \) iff \(cu^q \in I^q \) for all \(q \) if \(cu^q \in I^q \) for all \(q \) (since \(\hat{R} \) is faithfully flat over \(R \), \(\hat{R} \cap R = J \) for all \(J \subseteq R \)) iff \(cu^q \in (I \hat{R})[q] \) for all \(q \) if \(u \in (I \hat{R})^* \). It is not necessary that \(I \) be \(m \)-primary. More generally, if \(R \subseteq S \), \(c \in R \) is a test element for both rings, and \(JS \cap R = J \) for all \(J \subseteq R \), then \(u \in I^*_R \) iff \(u \in (IS)^*_S \). \(\square \)

3. Since \(R \) and \(S \) are domains, \(R^\circ \subseteq S^\circ \) and \(I^* \subseteq (IS)^* = IS \). Hence \(I^* \subseteq IS \cap R \). The fact that \(IS \cap R \subseteq I^* \) was proved in class (see the Theorem on the first page of the Lecture Notes from October 12).

4. Frobenius closure of ideals commutes with localization: if \(W \) is a multiplicative system in \(R \) and \((u/w)^q \in (W^{-1}R)[q] \), where \(u \in R \) and \(w \in W \), then for some \(w_1 \in W \) we have \(w_1u^q \in I^q \), and then \((w_1u)^q \in I^q \) as well. But then \(w_1u \in IF \), and so \(u \in IF \), which shows that \(u/w \in IFW^{-1}R \) as well. Now suppose that \(u \in I^* \) but the \(cu \notin IF \). We want to obtain a contradiction. The latter condition can be preserved by localizing at a maximal ideal \(m \) in the support of the image of \(cu \) in \(R/IF \). We then have that \(u/1 \in (IR_m)^* \) in \(R_m \), but that \(u/1 \notin (IR_m)^F \). Choose \(q \geq N_m \). We also have that \(u^q/1 \in (IR_m)[q]^* \), and so \(c^qu^q/1 \in (IR_m)[q] \), since \(c^q \) is a multiple of \(cN_m \). But this says that \((cu/1)^q \in (IR_m)[q] \), which shows that \(cu/1 \in (IR_m)^F \), a contradiction. \(\square \)

5. Let \(c_S \) be a test element for \(S \). Then \(c_S \) satisfies an equation of integral dependence on \(R \) whose constant term is not 0 (or factor out a power of \(x \)). Hence, \(c_S \) has a multiple \(c \) in \(R^\circ \). Now suppose that \(u \in H^*_G \), where \(H \) is a submodule of the module \(G \) over \(R \). Fix an \(R \)-linear map \(\theta : S \to R \) whose value on 1 is nonzero: call the value \(d \). \(\theta \) induces an \(R \)-linear map \(\eta : S \otimes G \to G \) such that \(s \otimes g \mapsto \theta(s)g \): hence, if \(g \in G \), \(\eta(1 \otimes g) = dg \). We have \(1 \otimes u \in \langle S \otimes_R H \rangle^*_S \otimes_R G \) and so \(1 \otimes cu \in \langle S \otimes_R H \rangle \), i.e., \(cu = \sum_{j=1}^h s_j \otimes h_j, s_j \in S, h_j \in H \). Apply \(\eta \) to obtain \(cd = \sum_{j=1}^n \eta(s_j)h_j \in H \). Thus, \(cd/u \) is a test element for \(R \). \(\square \)

6. Let \(x \in m \). It suffices to show that if \(N \subseteq M \) are finitely generated modules and \(u \in N_M^* \), then \(xu \subseteq N \), for then \(m \subseteq \tau(R) \) (if \(\tau(R) = R \), \(R \) is weakly F-regular). If not, choose \(N' \) with \(N \subseteq N' \subseteq M \) such that \(N' \) is maximal with respect to not containing \(xu \). Then \(M/N' \) is a finite length essential extension of \(Rxu \), which is killed by \(m \). We may replace \(u \) and \(N \subseteq M \) by \(u + N' \) and 0 \(\subseteq M/N' \) as a counterexample. For large \(t \), \(I_t = (x_1^t, \ldots, x_d^t)R \) kills \(M \), and since \(R/I_t \) is \((R/I_t)\)-injective, \(M \) embeds in \(R/I_t \). \(xu \) must map to a socle generator, which we may take to be the image, \(z \), of \((x_1 \cdots x_d)^{t-1}y \). By hypothesis, \((I_t, z)R \) is tightly closed, so that \(Kz \) is tightly closed in \(R/I_t \). But since \(u \in 0_M^* \), its image \(v \in 0_{R/I_t}^* \subseteq (Kz)_{R/I_t}^* = Kz \). Since \(v \in Kz, xv = 0 \). Since \(M \subseteq R/I_t \), we also have \(xu = 0 \), a contradiction. \(\square \)