In recent years a great deal of my research, much of it joint with Craig Huneke, has been aimed at developing the notion of tight closure. The result mentioned above on the Cohen-Macaulay property for rings of invariants and several other apparently unrelated results can be proved using this technique. Tight closure is a closure operation defined on ideals (and submodules of Noetherian modules) first over Noetherian rings of positive prime characteristic p, but it can be extended to all Noetherian rings containing a field. Other applications include the Briançon-Skoda theorem on integral closures of ideals, and the result that regular rings are direct summands of their module-finite extension algebras (this is a theorem for rings containing a field, and a major open question in dimension four or higher, even if the regular ring is Z[x,y,z]). In particular, I am very interesed in developing an analogue for tight closure theory that could be applied to Noetherian rings that do not necessarily contain a field.
Here is a link for some primarily expository manuscripts related to these subjects, and here is a link for some primarily research manuscripts related to them.