Math. 632. Homework 2

1. Let \(k = F(t) \) be a purely transcendental extension of a field \(F \) and \(K \) be an extension of \(k \) obtained by adjoining a \(p \)-th root of \(t \). Compute the Galois group scheme of the extension \(K/k \).

2. Let \(\mathcal{F} \) be a functor from the category of algebras over a ring \(R \) to the category of sets. Assume \(\mathcal{F} \) is representable by an affine scheme of finite type over \(R \). Show that the functor \(\mathcal{F}' \) defined by \(\mathcal{F}'(K) = \mathcal{F}(K[[T]]) \) (check that this defines a functor) is representable by a scheme.

3. Show that \(X = \text{Spec} k[X,Y]/(X,Y^3) \) is contained in a closed reduced subscheme of \(\mathbb{A}^2_k \) of the form \(\text{Spec}(k[X,Y]/(f(X,Y))) \), where \(f(x,y) = 0 \) is a nonsingular curve. Show that for \(X = \text{Spec} k[X,Y]/(X^2,Y^2,XY) \) this is not true.

4. Let \(k/F \) be a finite extension of fields. Consider the functor which assigns to a \(F \)-algebra \(K \) the group of invertible elements of \(k \otimes_F K \). Show that this functor is representable by an affine group scheme. Find it explicitly in the case \(F = \mathbb{R} \) and \(k = \mathbb{C} \). Show that its real points is the group \(\mathbb{C}^* \) and its complex points is the group \(\mathbb{C}^* \times \mathbb{C}^* \). What is its Lie algebra scheme?

5. Give an example of a sheaf of ideals on a scheme \(X \) which is not a quasi-coherent sheaf.

6. Prove that assigning to a finitely generated projective module \(M \) over a domain \(A \) the vector bundle \(V(M) = \text{Spec} S(M^*) \) establishes a one-to-one correspondence between vector bundles on \(\text{Spec} A \) and finitely generated projective \(A \)-modules. Show that this defines an isomorphism of categories of projective bundles over \(\text{Spec} A \) (a subcategory of the category of schemes over \(\text{Spec} A \)) and the category of finitely generated projective modules (a full subcategory of the category of modules over \(A \)).

7. Let \(X \) be the open subscheme of \(\mathbb{A}^{n+1}_R = \text{Spec} R[T_0, \ldots, T_n] \) whose complement is the closed point \((T_1, \ldots, T_n)\). Show that \(X \) admits a morphism \(\mathbb{P}^n_R \) and an open embedding (as \(\mathbb{P}^n \)-schemes) into a line bundle over \(\mathbb{P}^n \) (may do it in the case \(n = 1 \)).

8. Let \(S \) be a scheme and \(X = \mathbb{A}^3_S \to S \) be the affine space over \(S \). Show that the canonical homomorphism \(\text{Pic} S \to \text{Pic} X \) is an isomorphism.

9. Give an example of a morphism \(X \to S \) such that it is locally isomorphic to a vector bundle over \(S \) but not a vector bundle (i.e. the transition isomorphisms are not linear).

10. Let \(K \) be a finite extension of \(\mathbb{Q} \) and \(\mathcal{O} \) be a normal subring of \(K \) with fraction field \(K \) (a maximal order in \(K \)). Show that \(\text{Pic}(\mathcal{O}) \) is a finite group and each element can be represented by a fractional ideal in \(K \) (an \(\mathcal{O} \)-submodule of \(K \)). Show that \(\text{Pic} \mathcal{O} \) is trivial when \(K = \mathbb{Q} \) or \(\mathbb{Q}(i) \) and give an example when it is not trivial.