$S = \{1, 2, 3\}$
$T = \{4, 5, 6\}$
$U = \{1, 7, 8\}$

$f : S \rightarrow T$
$g : T \rightarrow U$

$f(1) = 4, f(2) = 4, f(3) = 6$
$g(4) = 7, g(5) = 1, g(6) = 8$

Composition:

Composition:
\[g(f(1)) = g(4) = 7 \]
\[g(f(2)) = g(4) = 7 \]
\[g(f(3)) = g(6) = 8 \]

Because of that, the composed mapping is denoted by \(g \circ f \) (Note: in contrast with our notation for permutations.)

\[g \circ f : S \rightarrow U \]

The identity mapping

\[\text{Id} = \text{Id}_S : S \rightarrow S \]

\[\text{Id}(x) = x \]

"the function x"
The inverse of a mapping \(f : S \to T \) (if one exists) is mapping \(f^{-1} : T \to S \) such that \(f \circ f^{-1} = \text{Id}_S \) and \(f^{-1} \circ f = \text{Id}_T \).

Note that a mapping has an inverse if and only if it is bijective (is a bijection).
Recall: A homomorphism of groups is a mapping such that
\[f(xy) = f(x)f(y) \quad \text{for all} \quad x, y \in G. \]
(\text{It follows that} \quad f(e) = e, \quad f(x^{-1}) = (f(x))^{-1}.)
Note: An isomorphism is the same thing as a bijection homomorphism.

Other examples of homomorphisms: If $f_1 \subseteq G$ is a subgroup,

\[i : H \rightarrow G \]

\[i(x) = x \]

\[\text{injective} \]
\[\text{is a homomorphism (called an inclusion).} \]

\[\text{(it is not called the identity because the domain is not equal to the codomain).} \]
Another example is when \(H \triangleleft G \), then we have the factor group

\[
G/H = \{ gH \mid g \in G \} = \{ \{ h \mid g \in G \} \}
\]

\[
(g_1 H)(g_2 H) = g_1 g_2 H.
\]

Then \(p : G \to G/H \) given by \(p(g) = gH \) is a homomorphism (called the projection).

\(|G| = |G/H| \cdot |H| \).

(recall "the equivalence class of \(g \),")
The homomorphism theorem: Let \(f : G \to J \) be any homomorphism of groups. Define the kernel of \(f \) as

\[
\text{Ker } f = \{ g \in G \mid f(g) = e \}
\]

the set of all \(g \in G \) such that \(f(g) = e \).

Then \(\text{Ker } f \triangleleft G \) and there exists a unique

\(p : G \to G/\text{Ker } f \)

such that \(g \mapsto g \text{Ker } f \).
injective homomorphism

\[\overline{f} : G/\text{Ker}f \rightarrow J \quad \text{(only one)} \]

such that \(f \circ p = \overline{f} \).

Then two mean the same thing.

\[p : G \rightarrow G/\text{Ker}f \]

projection

\[G \xrightarrow{f} J \]

Example: \(f : (\mathbb{Z}/8,+) \rightarrow (\mathbb{Z}/8,+) \) (\(\ast \))

\[f(x) = 2x \mod 8 \]
\[\mathbb{Z}/8 = \{0, 1, 2, 3, 4, 5, 6, 7\} \]

\[\text{Ker} f = \{0, 4\} \]

\[\mathbb{Z}/8 / \{0, 4\} = \{[0], [1], [2], [3]\} \]

\[\mathbb{Z}/4 = \{[0], [1], [2], [3]\} \]

(\text{Wait a while, I will use the homomorphism theorem to prove this.})

\[\mathbb{Z}/8 \xrightarrow{\cdot 2} \mathbb{Z}/8 \]

\[\mathbb{Z}/8 / \{0, 4\} \]

\[\{0\} = [0] \]

\[\{2\} = [2] \]

\[\{4\} = [4] \]

\[\{6\} = [6] \]
Note: Now we have a more advanced view of $\mathbb{Z}/8$ (or any \mathbb{Z}/n).

Let $m \mathbb{Z}$ be the subgroup of $(\mathbb{Z}, +)$ consisting of numbers divisible by m. (\mathbb{Z} is abelian, so every subgroup is normal).

$$\mathbb{Z}/m \mathbb{Z} = \{0 + m \mathbb{Z}, 1 + m \mathbb{Z}, \ldots, (m-1) + m \mathbb{Z}\}$$

$$\mathbb{Z}/n \mathbb{Z} = \{0, 1, \ldots, (n-1)\}$$
\[\mathbb{Z}/8\mathbb{Z} = \{ 0 + 8\mathbb{Z}, 1 + 8\mathbb{Z}, \ldots, 7 + 8\mathbb{Z} \} \]

\[1 + 8\mathbb{Z} = 9 + 8\mathbb{Z} = -7 + 8\mathbb{Z} \ldots \]

(wherever I add a multiple of 8, I get the same coset)

Proof that \(f: \mathbb{Z}/8 \rightarrow \mathbb{Z}/8 \)

is a homomorphism:

\[2(a + b) = 2a + 2b \]

\[x \mapsto 2x \quad \text{is a homomorphism} \]

\[\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}/8\mathbb{Z} \]

projection

\[\mathbb{Z} \rightarrow \mathbb{Z}/8\mathbb{Z} \]
\[\text{Ker } g = 4\mathbb{Z} \quad \downarrow \quad \cdots \quad \rightarrow \]
\[\mathbb{Z}/4\mathbb{Z} \]

(I need a slightly more general statement, will continue next time.)

\[\text{(HW) } \text{let } f : \mathbb{Z}/24 \to \mathbb{Z}/24 \]
be given by \(f(x) = 20x \mod 24 \).

Find Ker \(f \), describe \((\mathbb{Z}/24)/\text{Ker } f \) and the injective homomorphism
\[\bar{f} : (\mathbb{Z}/24)/\ker f \rightarrow \mathbb{Z}/24 \]

such that

\[\mathbb{Z}/24 \xrightarrow{f} \mathbb{Z}/24 \]

\[\downarrow \]

\[(\mathbb{Z}/24)/\ker f \xrightarrow{\bar{f}} \mathbb{Z}/24 \]