1. Prove that the abelian group $\mathbb{Z}/n^2\mathbb{Z}$ is never isomorphic to $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$ for any integer $n > 1$.

Solution: $\mathbb{Z}/n \oplus \mathbb{Z}/n$, which has n^2 elements, is not cyclic because each of its elements a satisfies $na = 0$ and hence the subgroup generated by a has at most n elements. □
2. Let \(f : A \to \mathbb{Z} \) be a homomorphism of abelian group which is onto. Prove that then there exists an abelian group \(B \) and an isomorphism \(\phi : A \to B \oplus \mathbb{Z} \) such that the following diagram commutes

\[
\begin{array}{ccc}
A & \xrightarrow{f} & \mathbb{Z} \\
\downarrow{\phi} & & \downarrow{\pi} \\
B \oplus \mathbb{Z} & \nearrow{} &
\end{array}
\]

where \(\pi \) is the projection to the second factor.

Solution: Put \(B = Ker(f) \). Choose \(a \in A \) such that \(f(a) = 1 \), and define \(\phi(b) = (b - f(b)a, f(a)) \). Then \(\phi(a) = (?, 1), \phi(b) = (b, 0) \) for \(b \in B \), and hence \(\phi \) is onto. If \(\phi(x) = 0 \), then by definition, \(f(x) = 0 \) so \(x \in Ker(f) = B \), so \(\phi(x) = (x, 0) \) and hence \(x = 0 \) and \(\phi \) is also injective. \(\square \)
3. Describe all the left ideals in the ring $M_2(\mathbb{R})$ of 2×2 matrices over \mathbb{R}.

 Solution: (Rohini’s idea) All the left ideals of $M_n(\mathbb{R})$, identified with the ring of linear maps $\mathbb{R}^n \to \mathbb{R}^n$, for any n, are the sets I_V of all matrices annihilating a given vector subspace $V \subseteq \mathbb{R}^n$ (i.e. there is one left ideal for each V). Clearly, these are ideals. On the other hand, denote for $A \in M_n(\mathbb{R})$ by $V(A)$ the solution space $\{x \in \mathbb{R}^n \mid Ax = 0\}$. Let $I \in M_n(\mathbb{R})$ be a left ideal and let $A \in I$ be such that the solution space has the least dimension k. Then WLOG, $V(A)$ is spanned by the last k coordinate vectors in \mathbb{R}^n, hence using row operations, the diagonal matrix D_{n-k} with first $n - k$ diagonal entries 1 and other diagonal entries 0 satisfies $D_{n-k} \in I$. Hence, any matrix with the last k columns equal to 0 is in I. Hence, no matrix whose last k columns are not all zero is in I (since otherwise we may alter the first $n - k$ columns arbitrarily and thus produce a matrix with a solution space of lower dimension). \square
4. Construct a commutative ring R containing $\mathbb{R}[x]$ as a subring such that $x, x + 2 \in R^\times$ but $x + 1 \notin R^\times$. [It is OK to construct an injective homomorphism $\mathbb{R}[x] \to S$ and treat it as an inclusion.]

Solution: Clearly, letting D be the set of all polynomials of the form $x^k(x + 2)^\ell$, we want to put $R = D^{-1}\mathbb{R}[x]$. The universal ring homomorphism $\mathbb{R}[x] \to R$ is an inclusion since D does not contain 0 or any zero divisors. Why is $x + 1$ not a unit of R? Otherwise,

$$(x + 1)p(x)/(x^k(x + 2)^\ell) = 1$$

in R and hence in the field of rational functions $\mathbb{R}(x)$ by universality. This implies

$$(x + 1)p(x) = x^k(x + 2)^\ell \in \mathbb{R}[x],$$

but considering roots, that is impossible. □
5. Let R, S be commutative rings. Prove that prime ideals in the product ring $R \times S$ are precisely subsets of the form

$$R \times q = \{(x, y) \in R \times S \mid x \in R, y \in q\}$$

for a prime ideal q of S and

$$p \times S = \{(x, y) \in R \times S \mid x \in p, y \in R\}$$

for a prime ideal p of R.

Solution: One readily verifies by definition that $R \times q$, $p \times S$ for $p \subset R$ and $q \subset S$ prime are prime ideals of $R \times S$. To prove the converse, let I be a prime ideal of $R \times S$. Then $(0, 1) \cdot (1, 0) = (0, 0) \in I$, so $(0, 1) \in I$ or $(1, 0) \in I$. WLOG $(0, 1) \in I$. Letting p be the image of I under the projection $R \times S \to R$, we already see that $I = p \times S$. To see that p is prime, suppose $x, y \notin p$, $xy \notin p$. Then $(x, 0), (y, 0) \notin I$, $(x, 0) \cdot (y, 0) = (xy, 0) \in I$ - a contradiction with I being prime. \qed