The differential in CW-homology is more precisely on $\text{Cell}(X)$ with coefficients in \mathbb{Z}

$(\partial A) \in \text{Hom}(\mathbb{Z}, A)$ - all the other cases

(see Section 2 notes)

X CW-complex

$H_n(X_{m+1}, X_{m-1}) \rightarrow H_{n-1}(X_{m-1}, X_{m-2})$

$\partial \rightarrow H_{n-1}(X_{m-1}) \rightarrow H_{n-1}(\leq)$
work on one cell in \(X^n \)

\[(0^n, s^{n-1}) \to (X_m, X_{m-1})\]

\[H_m(0^n, s^{n-1}) \to H_m(X_m, X_{m-1})\]

\[\partial \mid \quad \partial\]

\[H_{m-1}(s^{n-1}) \to H_{m-1}(X_{m-1})\]

\[\text{dim.} \quad m \geq 1\]

(0 requires extra care, e.g., \(\widetilde{H}_1 \))
$S^{n-1} \to X_{n-1} \to X_{n-1}/X_{n-2} = \bigvee S^{n-1} \to S^{n-1}$

attachment
map of i-cell

map of j-cell

Thing of the differential as a $I_{m-1} \times I_m$-matrix

$(V_j \subset I_m \ni f_j \subset I_{m-1})$ finite

$a_{ij} = 0$ unless $i \in \{j, \bar{j}\}$

a_{ij} is the effect of δ_{ij} in homology

$H_{n-1}(S^{n-1}) \to H_{n-1}(S^{n-1})$

\mathbb{Z}

\mathbb{Z}
multiplication by the number \(a_{ij} \in \mathbb{Z} \)

The number is called the \textit{degree} \(\deg f_{ij} \).

It can be computed geometrically. (Caution: the isomorphisms depend on orientation of \(S^{n-1} \). The orientation is arbitrary, except keep it fixed in each cell.)

Orientation of a smooth manifold \(M \) is the orientation of \(T_{x} M \) at every \(x \in M \), to be called \textit{canonical}.

orientation of an \(n \)-vector space \(V \), \(\text{dim } V = n \)
is picking a connected component
of \(\text{Iso}(V, \mathbb{R}^n) \),

\[\cong \text{Gl}_n(\mathbb{R}) \] (has 2 connected components given by the

sign of the determinant)

If \(f : S^n \to S^n \), \(f \sim g \), \(y \in S^n \) with an open

neighborhood \(U \) such that \(f|_{g^{-1}(U)} \) is smooth,

for every \(x \in g^{-1}(y) \), \(Dg|_x : TS^n_x \to TS^n_y \) is an \(\equiv \).

Then define:
Theorem: \(\text{deg } f = \sum \text{sgn } Dg_x \)

\[x \in g^{-1}(y) \]

+1 if \(Dg_x \) preserves orientation

-1 if \(Dg_x \) reverses orientation. \(\square \)

(See 592)

Example: \(\mathbb{R}P^m \), \(\mathbb{R}P^\infty \).

Representing \(\mathbb{R}P^n \) as a CW-complex.

\[\mathbb{R}P^n = S^n / \sim -x \sim x \subset \text{quotient topology} \]
$S^n = \{(x_0, \ldots, x_n) \mid \sum x_k^2 = 1\}$

Unit sphere in \mathbb{R}^{n+1}.

$S^{n+1} = \{(x_0, \ldots, x_n) \in S^n \mid x_n \geq 0\}$

After identification, S^n becomes $\mathbb{C}P^n$ cell.

$S^{n-1} \subset S^n$

$S^{n-1} = \{(x_0, \ldots, x_{n-1}, 0) \in S^n\}$

This becomes $\mathbb{R}P^{n-1}$
The attaching map is the covering map
\[s^{m-1} \to \mathbb{R}P^{m-1} = \mathbb{S}^{m-1} / \sim \]
\[\mathbb{R}P^m = \bigcup \left(\cdots \subset \mathbb{R}P^{m-1} \subset \mathbb{R}P^m \subset \cdots \right) \]

is also a CW complex, with 1 cell in every dimension \(\geq 0 \).

Comment: Proving rigorously that the CW complex \(X_m \) constructed really is homeomorphic to \(\mathbb{R}P^m \):

Step 1: \(X_m \to \mathbb{R}P^m \) by a bijective continuous map.

because \(X_m \) is successively
constructed from X_{n-1} by a
functor

\[S^{n-1} \rightarrow X_{n-1} \rightarrow \mathbb{R}P^{n-1} \]

which has a universal
property

Step 2: If $f: X \rightarrow Y$ is a bijective
continuous map where X is compact and
Y is Hausdorff, then f is a homeomorphism.
Computing $H_k(\mathbb{R}P^n; A)$, $H^k(\mathbb{R}P^n; A)$

HW: Compute

$H_k(\mathbb{R}P^\infty; A)$

$H^k(\mathbb{R}P^\infty; A)$

$\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to \cdots \to \mathbb{Z} \to \mathbb{Z}$

$d^\text{cell} = 2 \quad n \text{ even}$

$0 \quad n \text{ odd}$

degree of f

$\mathbb{R}P^{n-1} \to \mathbb{R}P^n$
\[H^k(\mathbb{RP}^n; \mathbb{Z}) = \begin{cases} \mathbb{Z} & k = 0 \\ \mathbb{Z}/2 & k \text{ odd } 0 < k < n \\ 0 & \text{otherwise} \end{cases} \]

\[H^k(\mathbb{RP}^n; \mathbb{Z}) = \begin{cases} \mathbb{Z} & k = 0 \text{ or } k = n \\ \mathbb{Z}/2 & k \text{ odd } 0 < k < n \\ 0 & \text{otherwise} \end{cases} \]

Now look at \[H^k(\mathbb{RP}^n; \mathbb{Z}) : \]
\[\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \cdots \]
\[\mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \cdots \]
\[\mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{1} \cdots \]
\[\mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{1} \cdots \]
\[\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \cdots \]
\[\mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \cdots \]
\[H^k(\mathbb{R}P^\infty; \mathbb{Z}) = \mathbb{Z} \quad k = 0 \quad \text{or} \quad (k = n \text{ and } n \text{ odd}) \]

\[\forall k \quad k \text{ even} \quad 0 < k < n \]

\[0 \quad \text{otherwise} \]

\[H_k(\mathbb{R}P^n; \mathbb{Z}/2) \quad \mathbb{Z}/2 \overset{0}{\rightarrow} \mathbb{Z}/2 \cdots \overset{0}{\rightarrow} \mathbb{Z}/2 \]

\[= H^k(\mathbb{R}P^n; \mathbb{Z}/2) = \mathbb{Z}/2 \quad k \quad 0 \leq k \leq n \]

\[= 0 \quad \text{else} \]

\[H_k(\mathbb{R}P^n; \mathbb{Q}) \quad \mathbb{Q} \overset{2}{\rightarrow} \mathbb{Q} \cdots \overset{2}{\rightarrow} \mathbb{Q} \overset{0}{\rightarrow} \mathbb{Q} \quad n \text{ even} \]

\[= \mathbb{Q} \quad k = 0 \quad n \quad (k = n \text{ odd}) \]

\[\mathbb{Q} \overset{0}{\rightarrow} \mathbb{Q} \overset{2}{\rightarrow} \cdots \overset{2}{\rightarrow} \mathbb{Q} \overset{0}{\rightarrow} \mathbb{Q} \quad n \text{ odd} \]
$0 \in \mathcal{H}_n(\mathbb{R}^n; \mathbb{Q})$ for $n \in \mathbb{Q}$.

Something is happening when I am changing coefficients, and/or taking cohomology.

Next: The universal coefficient theorem.

* HW: The lens space for \mathbb{C}/\mathbb{R}:

$$S^{2n-1} = \{ (z_1, \ldots, z_n) \in \mathbb{C}^n \mid \sum |z_k|^2 = 1 \}$$
Now \(S' = \{ \lambda \in \mathbb{C} \mid \lambda\tau = 1 \} \), a group, acts on \(S^{2n-1} \).

\[d \cdot (z_1, \ldots, z_n) = (\lambda^2 z_1, \ldots, \lambda^2 z_n). \]

Consider \(\mathbb{Z}/k \subset S' \) (a subgroup) and put

\[L^k : = S^{2n-1} \bigg| _{z \sim \lambda \in \mathbb{Z}/k} \quad \lambda \in \mathbb{Z}/k, \quad z \in S^{2n-1} \]

Put a quotient topology.

(2) Find a CW-structure on \(L^k \).

(Hint: even and odd - dimensional)
Cells are different.) Consider dim. 1, 2.

(b) Compute $H_i(C^n; \mathbb{Z})$, $H_i(C^*; \mathbb{Z})$.